Angiogenesis

Angiogenesis Publications

Ueta T, Ishihara K, Notomi S, Lee J-J, Maidana DE, Efstathiou NE, Murakami Y, Hasegawa E, Azuma K, Toyono T, Paschalis EI, Aihara M, Miller JW, Vavvas DG. RIP1 kinase mediates angiogenesis by modulating macrophages in experimental neovascularization. Proc Natl Acad Sci U S A 2019;116(47):23705-23713.Abstract
Inflammation plays an important role in pathological angiogenesis. Receptor-interacting protein 1 (RIP1) is highly expressed in inflammatory cells and is known to play an important role in the regulation of apoptosis, necroptosis, and inflammation; however, a comprehensive description of its role in angiogenesis remains elusive. Here, we show that RIP1 is abundantly expressed in infiltrating macrophages during angiogenesis, and genetic or pharmacological inhibition of RIP1 kinase activity using kinase-inactive RIP1 mice or necrostatin-1 attenuates angiogenesis in laser-induced choroidal neovascularization, Matrigel plug angiogenesis, and alkali injury-induced corneal neovascularization in mice. The inhibitory effect on angiogenesis is mediated by caspase activation through a kinase-independent function of RIP1 and RIP3. Mechanistically, infiltrating macrophages are the key target of RIP1 kinase inhibition to attenuate pathological angiogenesis. Inhibition of RIP1 kinase activity is associated with caspase activation in infiltrating macrophages and decreased expression of proangiogenic M2-like markers but not M1-like markers. Similarly, in vitro, catalytic inhibition of RIP1 down-regulates the expression of M2-like markers in interleukin-4-activated bone marrow-derived macrophages, and this effect is blocked by simultaneous caspase inhibition. Collectively, these results demonstrate a nonnecrotic function of RIP1 kinase activity and suggest that RIP1-mediated modulation of macrophage activation may be a therapeutic target of pathological angiogenesis.
Siddiqui Y, Yin J. Anterior Segment Applications of Optical Coherence Tomography Angiography. Semin Ophthalmol 2019;:1-6.Abstract
: To review the current literature regarding optical coherence tomography angiography (OCT-A) applications in the anterior segment. : A literature search was performed for terms including OCT-Angiography, anterior segment, cornea, conjunctiva, iris, applications and use in ophthalmology. : Fifteen studies were identified, 14 in human subjects. Studies with OCT-A of the conjunctiva, episclera, cornea, and iris were identified, some with normal eyes imaged and others with various pathologies. Most of these studies imaged corneal neovascularization. Three studies described protocols used for image acquisition, one of which was referenced by two later papers. : OCT-A is a noninvasive technology with recent applications in the anterior segment. Several pilot studies have been performed on various anterior segment structures and disease states however standardization of image acquisition techniques is still needed. Future imaging could allow noninvasive and serial monitoring of pathology as well as recurrence after therapeutic intervention.
Liu C-H, Wang Z, Huang S, Sun Y, Chen J. MicroRNA-145 Regulates Pathological Retinal Angiogenesis by Suppression of TMOD3. Mol Ther Nucleic Acids 2019;16:335-347.Abstract
Pathological angiogenesis is a hallmark of various vascular diseases, including vascular eye disorders. Dysregulation of microRNAs (miRNAs), a group of small regulatory RNAs, has been implicated in the regulation of ocular neovascularization. This study investigated the specific role of microRNA-145 (miR-145) in regulating vascular endothelial cell (EC) function and pathological ocular angiogenesis in a mouse model of oxygen-induced retinopathy (OIR). Expression of miR-145 was significantly upregulated in OIR mouse retinas compared with room air controls. Treatment with synthetic miR-145 inhibitors drastically decreased levels of pathological neovascularization in OIR, without substantially affecting normal developmental angiogenesis. In cultured human retinal ECs, treatment with miR-145 mimics significantly increased the EC angiogenic function, including proliferation, migration, and tubular formation, whereas miR-145 inhibitors attenuated in vitro angiogenesis. Tropomodulin3 (TMOD3), an actin-capping protein, is a direct miR-145 target and is downregulated in OIR retinas. Treatment with miR-145 mimic led to TMOD3 inhibition, altered actin cytoskeletal architecture, and elongation of ECs. Moreover, inhibition of TMOD3 promoted EC angiogenic function and pathological neovascularization in OIR and abolished the vascular effects of miR-145 inhibitors in vitro and in vivo. Overall, our findings indicate that miR-145 is a novel regulator of TMOD3-dependent cytoskeletal architecture and pathological angiogenesis and a potential target for development of treatments for neovascular eye disorders.
Wang JC, Miller JB. For Mass Eye and Ear Special Issue: Optical Coherence Tomography Angiography: Review of Current Technical Aspects and Applications in Chorioretinal Disease. Semin Ophthalmol 2019;:1-7.Abstract
Optical coherence tomography angiography (OCT-A) has enabled fast, non-invasive, high-resolution visualization of vasculature within the eye. In the past few years, it has become increasingly utilized for a range of disorders including age-related macular degeneration, diabetic retinopathy, retinal vein occlusions, and uveitis among others. This article reviews technical aspects of OCT-A, its applications in chorioretinal disease, and known limitations of the technology.
LeBlanc ME, Saez-Torres KL, Cano I, Hu Z, Saint-Geniez M, Ng Y-S, D'Amore PA. Glycocalyx regulation of vascular endothelial growth factor receptor 2 activity. FASEB J 2019;33(8):9362-9373.Abstract
We have previously shown that knockdown of endomucin (EMCN), an integral membrane glycocalyx glycoprotein, prevents VEGF-induced proliferation, migration, and tube formation and angiogenesis . In the endothelium, VEGF mediates most of its angiogenic effects through VEGF receptor 2 (VEGFR2). To understand the role of EMCN, we examined the effect of EMCN depletion on VEGFR2 endocytosis and activation. Results showed that although VEGF stimulation promoted VEGFR2 internalization in control endothelial cells (ECs), loss of EMCN prevented VEGFR2 endocytosis. Cell surface analysis revealed a decrease in VEGFR2 following VEGF stimulation in control but not siRNA directed against EMCN-transfected ECs. EMCN depletion resulted in heightened phosphorylation following VEGF stimulation with an increase in total VEGFR2 protein. These results indicate that EMCN modulates VEGFR2 endocytosis and activity and point to EMCN as a potential therapeutic target.-LeBlanc, M. E., Saez-Torres, K. L., Cano, I., Hu, Z., Saint-Geniez, M., Ng, Y.-S., D'Amore, P. A. Glycocalyx regulation of vascular endothelial growth factor receptor 2 activity.
Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol 2019;176(1):93-109.Abstract
Angiogenesis, disruption of the retinal barrier, leukocyte-adhesion and oedema are cardinal signs of proliferative retinopathies that are associated with vision loss. Therefore, identifying factors that regulate these vascular dysfunctions is critical to target pathological angiogenesis. Given the conflicting role of bioactive lipids reported in the current literature, the goal of this review is to provide the reader a clear road map of what has been accomplished so far in the field with specific focus on the role of polyunsaturated fatty acids (PUFAs)-derived metabolites in proliferative retinopathies. This necessarily entails a description of the different retina cells, blood retina barriers and the role of (PUFAs)-derived metabolites in diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration as the most common types of proliferative retinopathies.
Higgs C, Crow YJ, Adams DM, Chang E, Hayes D, Herbig U, Huang JN, Himes R, Jajoo K, Johnson BF, Reynolds SD, Yonekawa Y, Armanios M, Boulad F, DiNardo CD, Dufour C, Goldman FD, Khan S, Kratz C, Myers KC, Raghu G, Alter BP, Aubert G, Bhala S, Cowen EW, Dror Y, El-Youssef M, Friedman B, Giri N, Helms Guba L, Khincha PP, Lin TF, Longhurst H, McReynolds LJ, Nelson A, Olson T, Pariser A, Perona R, Sasa G, Schratz K, Simonetto DA, Townsley D, Walsh M, Stevens K, Agarwal S, Bertuch AA, Savage SA, for (CCCTAA) CCCT-associated A. Understanding the evolving phenotype of vascular complications in telomere biology disorders. Angiogenesis 2019;22(1):95-102.Abstract
Vascular complications such as bleeding due to gastrointestinal telangiectatic anomalies, pulmonary arteriovenous malformations, hepatopulmonary syndrome, and retinal vessel abnormalities are being reported in patients with telomere biology disorders (TBDs) more frequently than previously described. The international clinical care consortium of telomere-associated ailments and family support group Dyskeratosis Congenita Outreach, Inc. held a workshop on vascular abnormalities in the TBDs at the National Cancer Institute in October 2017. Clinicians and basic scientists reviewed current data on vascular complications, hypotheses for the underlying biology and developed new collaborations to address the etiology and clinical management of vascular complications in TBDs.
Shi L, Zhang N, Liu H, Zhao L, Liu J, Wan J, Wu W, Lei H, Liu R, Han M. Lysyl oxidase inhibition via β-aminoproprionitrile hampers human umbilical vein endothelial cell angiogenesis and migration in vitro. Mol Med Rep 2018;17(4):5029-5036.Abstract
Lysyl oxidase (LOX) is an enzyme that oxidizes lysine residues in collagens and elastin. It stabilizes or remodels the extracellular matrix and basement membrane of blood vessels. Current oncology studies have revealed that LOX is upregulated in invasive cancer cells and bolstered cell movement, and LOX was observed to promote the angiogenesis and migration of endothelial cells. In the present study, angiogenesis and migration were examined in human umbilical vein endothelial cells (HUVECs). Following cell treatment with 0.1-0.4 mM β-aminoproprionitrile (BAPN), a specific inhibitor of LOX, angiogenesis was analyzed with a fibrin gel in vitro angiogenesis assay kit and migration was examined via a Boyden Chamber assay. Angiogenesis-associated gene expression was investigated with a microarray assay and confirmed with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results showed that HUVEC angiogenesis substantially increased in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and phorbol 12-myristate 13-acetate (PMA). In addition, LOX inhibition blocked the angiogenesis stimulated by VEGF bFGF and PMA, and the inhibition of LOX reduced the migration of HUVECs. Furthermore, the microarray and RT-qPCR revealed that BAPN downregulated myeloid progenitor inhibitory factor 1, and western blot analysis demonstrated that BAPN decreased the phosphorylation of MAPK and Akt, suggesting that the specific inhibitor of LOX, BAPN, may serve as an alternative strategy for preventing angiogenesis.
Wu W, Duan Y, Ma G, Zhou G, Windhol C, D'Amore PA, Lei H. AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro. Invest Ophthalmol Vis Sci 2017;58(14):6082-6090.Abstract
Purpose: Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)-mediated CRISPR (clustered regularly interspaced short palindromic repeats)-associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. Methods: The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. Results: AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. Conclusions: AAV-CRISRP/Cas9-mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.
Park-Windhol C, Ng YS, Yang J, Primo V, Saint-Geniez M, D'Amore PA. Endomucin inhibits VEGF-induced endothelial cell migration, growth, and morphogenesis by modulating VEGFR2 signaling. Sci Rep 2017;7(1):17138.Abstract
Angiogenesis is central to both normal and pathologic processes. Endothelial cells (ECs) express O-glycoproteins that are believed to play important roles in vascular development and stability. Endomucin-1 (EMCN) is a type I O-glycosylated, sialic-rich glycoprotein, specifically expressed by venous and capillary endothelium. Evidence has pointed to a potential role for EMCN in angiogenesis but it had not been directly investigated. In this study, we examined the role of EMCN in angiogenesis by modulating EMCN levels both in vivo and in vitro. Reduction of EMCN in vivo led to the impairment of angiogenesis during normal retinal development in vivo. To determine the cellular basis of this inhibition, gain- and loss-of-function studies were performed in human retinal EC (HREC) in vitro by EMCN over-expression using adenovirus or EMCN gene knockdown by siRNA. We show that EMCN knockdown reduced migration, inhibited cell growth without compromising cell survival, and suppressed tube morphogenesis of ECs, whereas over-expression of EMCN led to increased migration, proliferation and tube formation. Furthermore, knockdown of EMCN suppressed VEGF-induced signaling as measured by decreased phospho-VEGFR2, phospho-ERK1/2 and phospho-p38-MAPK levels. These results suggest a novel role for EMCN as a potent regulator of angiogenesis and point to its potential as a new therapeutic target for angiogenesis-related diseases.
Liu C-H, Wang Z, Sun Y, Chen J. Animal models of ocular angiogenesis: from development to pathologies. FASEB J 2017;31(11):4665-4681.Abstract
Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies.
Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D'Amore PA, Lei H. Genome editing abrogates angiogenesis in vivo. Nat Commun 2017;8(1):112.Abstract
Angiogenesis, in which vascular endothelial growth factor receptor (VEGFR) 2 plays an essential role, is associated with a variety of human diseases including proliferative diabetic retinopathy and wet age-related macular degeneration. Here we report that a system of adeno-associated virus (AAV)-mediated clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Streptococcus pyogenes (SpCas9) is used to deplete VEGFR2 in vascular endothelial cells (ECs), whereby the expression of SpCas9 is driven by an endothelial-specific promoter of intercellular adhesion molecule 2. We further show that recombinant AAV serotype 1 (rAAV1) transduces ECs of pathologic vessels, and that editing of genomic VEGFR2 locus using rAAV1-mediated CRISPR/Cas9 abrogates angiogenesis in the mouse models of oxygen-induced retinopathy and laser-induced choroid neovascularization. This work establishes a strong foundation for genome editing as a strategy to treat angiogenesis-associated diseases.Abnormal angiogenesis causes many ocular diseases. Here the authors employ CRISPR/Cas9 gene editing technology to silence VEGFR2, a major regulator of angiogenesis, in retinal endothelium and abrogate angiogenesis in the mouse models of oxygen-induced retinopathy and laser-induced choroid neovascularization.
Sun Y, Liu C-H, Wang Z, Meng SS, Burnim SB, SanGiovanni JP, Kamenecka TM, Solt LA, Chen J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. FASEB J 2017;31(10):4492-4502.Abstract
Pathological proliferation of retinal blood vessels commonly causes vision impairment in proliferative retinopathies, including retinopathy of prematurity. Dysregulated crosstalk between the vasculature and retinal neurons is increasingly recognized as a major factor contributing to the pathogenesis of vascular diseases. Class 3 semaphorins (SEMA3s), a group of neuron-secreted axonal and vascular guidance factors, suppress pathological vascular growth in retinopathy. However, the upstream transcriptional regulators that mediate the function of SEMA3s in vascular growth are poorly understood. Here we showed that retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor and transcription factor, is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in a mouse model of oxygen-induced proliferative retinopathy. We found that genetic deficiency of RORα substantially induced Sema3e expression in retinopathy. Both RORα and SEMA3E were expressed in retinal ganglion cells. RORα directly bound to a specific ROR response element on the promoter of Sema3e and negatively regulated Sema3e promoter-driven luciferase expression. Suppression of Sema3e using adeno-associated virus 2 carrying short hairpin RNA targeting Sema3e promoted disoriented pathological neovascularization and partially abolished the inhibitory vascular effects of RORα deficiency in retinopathy. Our findings suggest that RORα is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in pathological retinal angiogenesis.-Sun, Y., Liu, C.-H., Wang, Z., Meng, S. S., Burnim, S. B., SanGiovanni, J. P., Kamenecka, T. M., Solt, L. A., Chen, J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis.
Khajavi M, Zhou Y, Birsner AE, Bazinet L, Rosa Di Sant A, Schiffer AJ, Rogers MS, Krishnaji ST, Hu B, Nguyen V, Zon L, D'Amato RJ. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice. PLoS Genet 2017;13(6):e1006848.Abstract
Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and treatment of a wide variety of angiogenesis-dependent diseases.

Pages