Age-related Macular Degeneration

Age-related Macular Degeneration (AMD) Publications

Narayanan D, Rodriguez J, Wallstrom G, Welch D, Chapin M, Arrigg P, Abelson M. An exploratory study to evaluate visual function endpoints in non-advanced age-related macular degeneration. BMC Ophthalmol 2020;20(1):424.Abstract
BACKGROUND: To prevent irreversible vision loss in age-related macular degeneration (AMD), it is critical to detect retinal dysfunction before permanent structural loss occurs. In the current study we evaluated a series of visual function tests to identify potential endpoints to detect visual dysfunction in non-advanced AMD. METHODS: A series of visual function tests were performed on 23 non-advanced AMD subjects (AREDS grade 1-4 on simplified scale) and 34 age-matched normals (AREDS grade 0). Tests included some commonly used endpoints such as ETDRS visual acuity (VA), low luminance (LL) 2.0ND ETDRS VA, MNREAD as well as newly developed tests such as the Ora-VCF™ test, Ora-tablet reading test, color sensitivity etc. Differences between the two groups were compared for each test. Test-retest repeatability and reproducibility was assessed on a subset of subjects and percent agreement was calculated. RESULTS: There was no difference in standard ETDRS VA between non-advanced AMD (0.06 ± 0.02 logMAR) and normal groups (0.04 ± 0.02 logMAR) (p = 0.57). LL 2.0 ETDRS VA and MNREAD showed no difference between the groups (p > 0.05). Ora-VCF™ test was significantly worse in the non-advanced AMD group compared to normals (0.67 ± 0.07 in AMD; 0.45 ± 0.04 in normals, p = 0.005). Non-advanced AMD subjects also had significantly worse reading performance using the Ora-tablet with LL 2.0ND (114.55 ± 11.22 wpm in AMD; 145.17 ± 9.55 wpm in normals p = 0.049). No significant difference between the groups was noted using other tests. Repeatability was 82% for Ora-VCF™ test and 92% for Ora-tablet LL 2.0ND reading. Reproducibility was 89% for both Ora-VCF™ test and Ora-tablet LL 2.0ND reading. CONCLUSION: While there was no significant difference between non-advanced AMD and normal groups using some current common endpoints such as ETDRS VA, LL 2.0 ETDRS VA or MNREAD, Ora-VCF™ test and Ora-tablet LL 2.0ND reading tests were able to identify significant visual dysfunction in non-advanced AMD subjects. These tests show promise as endpoints for AMD studies.
Roh M, Miller JW, Jeng-Miller KW, Wang JC, Laíns I, Silverman RF, Loewenstein JI, Husain D, Vavvas DG, Miller JB. Subthreshold Exudative Choroidal Neovascularization Associated With Age-Related Macular Degeneration Identified by Optical Coherence Tomography Angiography. J Vitreoretin Dis 2020;4(5):377-385.Abstract
Purpose: This article describes the clinical and multimodal imaging characteristics of subthreshold exudative choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD). Methods: Among 3773 patients with AMD, 8 eyes (6 patients) were identified with the clinical phenotype of interest. Dilated fundus examinations, color fundus photography, fluorescein angiography (FA), indocyanine green angiography (ICGA), optical coherence tomography (OCT), and OCT angiography (OCTA) were performed. Results: OCT typically showed a moderately reflective irregular pigment epithelial detachment with overlying subretinal fluid (SRF). Traditional FA did not show leakage and ICGA showed no definitive neovascular network or hot spots. However, OCTA clearly demonstrated a CNV within the pigment epithelial detachment. The majority of our cases (7 of 8) did not receive antivascular endothelial growth factor (anti-VEGF) injections, and visual acuity remained stable over the available follow-up period of I to 10 years. Conclusions: CNV is often associated with SRF and vision loss in AMD, usually requiring frequent anti-VEGF injections. OCTA allowed us to better identify CNV not readily detected on FA and ICGA. Although some have suggested early clinical intervention with anti-VEGF injections in any case with fluid and confirmed CNV on OCTA, we describe a subset of AMD patients with SRF who may be better managed by observation. These cases may represent a more indolent, mature, and stable vascular network.
Rossato FA, Su Y, Mackey A, Ng YSE. Fibrotic Changes and Endothelial-to-Mesenchymal Transition Promoted by VEGFR2 Antagonism Alter the Therapeutic Effects of VEGFA Pathway Blockage in a Mouse Model of Choroidal Neovascularization. Cells 2020;9(9)Abstract
Many patients with wet age-related macular degeneration do not respond well to anti- vascular endothelial growth factor A (VEGFA) therapy for choroidal neovascularization (CNV), and the efficacy of anti-VEGFA decreases over time. We investigated the hypothesis that fibrotic changes, in particular via endothelial-to-mesenchymal transition (EndoMT), play a role in CNV and alter the therapeutic effects of VEGFA pathway blockage. Induction of EndoMT of primary human retinal endothelial cells led to a significantly reduced response to VEGFA at the level of gene expression, cellular proliferation, migration, and tube formation. Suppression of EndoMT restored cell responsiveness to VEGFA. In a mouse model of spontaneous CNV, fibrotic changes and EndoMT persisted as the CNV lesions became more established over time. VEGFA receptor-2 (VEGFR2) antagonism further induced fibrosis and EndoMT in the CNV. The combination of VEGFR2 antagonism and fibrosis/EndoMT inhibition was more effective than either individual treatment in reducing CNV. Our data indicate that fibrosis and EndoMT are involved in the progression of CNV, are exacerbated by VEGFR2 inhibition, and could provide an explanation for the reduced efficacy of anti-VEGFA treatment over time.
Papadopoulos Z. Recent Developments in the Treatment of Wet Age-related Macular Degeneration. Curr Med Sci 2020;40(5):851-857.Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible blindness and visual impairment in individuals over the age of 50 years in western societies. More than 25 million people currently suffer from this illness in the world, with an additional 500 000 every year, approximately. It is a multifactorial ocular disease that affects the maculae due to a late-onset progressive neurodegeneration and dysfunction of photoreceptors and retinal pigment epithelium (RPE). There are many subtypes of AMD but basically two broad forms: the nonneovascular (dry, nonexudative) and neovascular (wet, exudative). Exudative AMD is the less common form (about 15%) but tends to progress more rapidly. At the moment, wet AMD is treated primarily on the basis of anti-vascular endothelial growth factor (VEGF) agents, which have led to massive improvement in the prognosis of the disease since they were first introduced. This article focuses on the latest treatment approaches to neovascular AMD. An extensive literature review was performed in order to illustrate the effectiveness of current and future anti-VEGF agents as well as the landmark clinical studies that have been carried out to establish these drugs as a gold standard in the therapy of wet AMD.
Narayanan D, Wallstrom G, Rodriguez J, Welch D, Chapin M, Arrigg P, Patil R, Abelson M. Early Ophthalmic Changes in Macula Does Not Correlate with Visual Function. Clin Ophthalmol 2020;14:2571-2576.Abstract
Purpose: Early detection and treatment of age-related macular degeneration require a clear understanding of the early progress of the disease. The purpose of this study was to investigate whether minimal macular ophthalmoscopic changes corresponded to changes in visual function. Methods: Color macular photos from a group of older subjects who were classified as grade 0 on AREDS simplified grading were further evaluated by a retinal specialist using 5x magnification for possible minimal macular anomalies. Group 0-A ( = 15) were defined as subjects with no visible macular anomalies while Group 0-B ( = 19) comprised subjects for whom minimal macular mottling, pigment changes or very small drusen (< 63 µm) were observed in the study eye. All subjects had best VA of 20/25 or better and had no evidence of other retinal diseases in the study eye. All subjects underwent a series of visual function tests such as standard ETDRS VA, low luminance ETDRS VA, Pelli-Robson contrast sensitivity, variable contrast flicker (VCF) sensitivity, and reading speed (words per minute, wpm) using both MNRead and low luminance reading on a tablet. Results: There was no significant difference between the mean age between the two groups (74.8 ± 5.2 years for 0-A vs 74.5 ± 4.4 for 0-B, = 0.82). None of the visual function tests identified any significant difference between the two groups. Mean ETDRS VA was 0.0 ± 0.11 for 0-A subjects and 0.08 ± 0.12 for 0-B ( = 0.063). Mean Pelli-Robson log contrast sensitivity was 1.75 ± 0.29 for 0-A and 1.78 ± 0.17 for the 0-B group ( = 0.73). VCF threshold was 0.47 ± 0.25 for 0-A and 0.43 ± 0.22 for 0-B ( = 0.64). Reading speed using MNRead was 214 ± 47.4 wpm for 0-A and 210 ± 64.7 for 0-B ( = 0.85). Low luminance tablet reading speed was 137 ± 71.8 wpm for 0-A and 151 ± 39.4 (0-B) ( = 0.49). Conclusion: A panel of psychophysical tests did not demonstrate significant differences between subjects with and without minimal macular changes.
Winkler TW, Grassmann F, Brandl C, Kiel C, Günther F, Strunz T, Weidner L, Zimmermann ME, Korb CA, Poplawski A, Schuster AK, Müller-Nurasyid M, Peters A, Rauscher FG, Elze T, Horn K, Scholz M, Cañadas-Garre M, McKnight AJ, Quinn N, Hogg RE, Küchenhoff H, Heid IM, Stark KJ, Weber BHF. Genome-wide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease. BMC Med Genomics 2020;13(1):120.Abstract
BACKGROUND: Advanced age-related macular degeneration (AMD) is a leading cause of blindness. While around half of the genetic contribution to advanced AMD has been uncovered, little is known about the genetic architecture of early AMD. METHODS: To identify genetic factors for early AMD, we conducted a genome-wide association study (GWAS) meta-analysis (14,034 cases, 91,214 controls, 11 sources of data including the International AMD Genomics Consortium, IAMDGC, and UK Biobank, UKBB). We ascertained early AMD via color fundus photographs by manual grading for 10 sources and via an automated machine learning approach for > 170,000 photographs from UKBB. We searched for early AMD loci via GWAS and via a candidate approach based on 14 previously suggested early AMD variants. RESULTS: Altogether, we identified 10 independent loci with statistical significance for early AMD: (i) 8 from our GWAS with genome-wide significance (P < 5 × 10), (ii) one previously suggested locus with experiment-wise significance (P < 0.05/14) in our non-overlapping data and with genome-wide significance when combining the reported and our non-overlapping data (together 17,539 cases, 105,395 controls), and (iii) one further previously suggested locus with experiment-wise significance in our non-overlapping data. Of these 10 identified loci, 8 were novel and 2 known for early AMD. Most of the 10 loci overlapped with known advanced AMD loci (near ARMS2/HTRA1, CFH, C2, C3, CETP, TNFRSF10A, VEGFA, APOE), except two that have not yet been identified with statistical significance for any AMD. Among the 17 genes within these two loci, in-silico functional annotation suggested CD46 and TYR as the most likely responsible genes. Presence or absence of an early AMD effect distinguished the known pathways of advanced AMD genetics (complement/lipid pathways versus extracellular matrix metabolism). CONCLUSIONS: Our GWAS on early AMD identified novel loci, highlighted shared and distinct genetics between early and advanced AMD and provides insights into AMD etiology. Our data provide a resource comparable in size to the existing IAMDGC data on advanced AMD genetics enabling a joint view. The biological relevance of this joint view is underscored by the ability of early AMD effects to differentiate the major pathways for advanced AMD.
Ibrahim AS, Hussein K, Wang F, Wan M, Saad N, Essa M, Kim I, Shakoor A, Owen LA, Deangelis MM, Al-Shabrawey M. Bone Morphogenetic Protein (BMP)4 But Not BMP2 Disrupts the Barrier Integrity of Retinal Pigment Epithelia and Induces Their Migration: A Potential Role in Neovascular Age-Related Macular Degeneration. J Clin Med 2020;9(7)Abstract
Disruption of retinal pigment epithelial (RPE) barrier integrity and RPE migration are hallmark features in neovascular age-related macular degeneration (nAMD), but the underlying causes and pathophysiology are not completely well-defined. Herein, we aimed to evaluate the effect of bone morphogenetic proteins (BMPs) on the barrier function and migration of RPE. In particular, we investigated the role of BMP2 and BMP4 in these processes as our analysis of RNA-sequencing (seq) data from human donor eyes demonstrated that they are highly differentially expressed BMP members in macular RPE/choroid versus macular retina. We used electrical cell-substrate impedance sensing (ECIS) system to monitor precisely in real time the barrier integrity and migration of ARPE-19 after treatment with various concentrations of BMP2 or BMP4. Immunofluorescence was also used to assess the changes in the expression and the organization of the key tight junction protein, zona occludens (ZO)-1, in ARPE-19 cells under BMP2 or BMP4 treatment. This was followed by measuring the activity of matrix metalloproteinases (MMPs). Finally, RNA-seq and ELISA were used to determine the local and circulating levels of BMP2 and BMP4 in retinas and serum samples from nAMD donors. Our ECIS results showed that BMP4 but not BMP2 decreased the transcellular electrical resistance (TER) of ARPE-19 and increased their migration in comparison with control (vehicle-treated cells). Furthermore, immunofluorescence showed a disorganization of ZO-1 in BMP4-treated ARPE-19 not in BMP2-treated cells or vehicle-treated controls. This effect of BMP4 was associated with significant increases in the activity of MMPs, specifically MMP2. Lastly, these results were corroborated by additional findings that circulating but not local BMP4 levels were significantly higher in nAMD donor samples compared to controls. Collectively, our results demonstrated unreported effects of BMP4 on inducing RPE dysfunction and suggest that BMP4 but not BMP2 may represent a potential therapeutic target in nAMD.
Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int J Mol Sci 2020;21(12)Abstract
Epithelial-mesenchymal transition (EMT) and endothelial-mesenchymal transition (EndMT) are physiological processes required for normal embryogenesis. However, these processes can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye, EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT, respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD have implicated a myriad of contributing factors including signaling pathways, extracellular matrix remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction. Questions arise as to differences in the mesenchymal cells derived from these two processes and their distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD microenvironment highlights the synergistic interactions between RPE and CECs that may augment the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT and EndMT and their contributions to both the dry and wet forms of AMD can aid the development of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular transdifferentiation processes, regenerate the retina and thus restore vision.
Hughes S, Gumas J, Lee R, Rumano M, Berger N, Gautam AK, Sfyroera G, Chan AL, Gnanaguru G, Connor KM, Kim BJ, Dunaief JL, Ricklin D, Hajishengallis G, Yancopoulou D, Reis ES, Mastellos DC, Lambris JD. Prolonged intraocular residence and retinal tissue distribution of a fourth-generation compstatin-based C3 inhibitor in non-human primates. Clin Immunol 2020;214:108391.Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the elderly population. Genetic studies in susceptible individuals have linked this ocular disease to deregulated complement activity that culminates in increased C3 turnover, retinal inflammation and photoreceptor loss. Therapeutic targeting of C3 has therefore emerged as a promising strategy for broadly intercepting the detrimental proinflammatory consequences of complement activation in the retinal tissue. In this regard, a PEGylated second-generation derivative of the compstatin family of C3-targeted inhibitors is currently in late-stage clinical development as a treatment option for geographic atrophy, an advanced form of AMD which lacks approved therapy. While efficacy has been strongly suggested in phase 2 clinical trials, crucial aspects still remain to be defined with regard to the ocular bioavailability, tissue distribution and residence, and dosing frequency of such inhibitors in AMD patients. Here we report the intraocular distribution and pharmacokinetic profile of the fourth-generation compstatin analog, Cp40-KKK in cynomolgus monkeys following a single intravitreal injection. Using a sensitive surface plasmon resonance (SPR)-based competition assay and ELISA, we have quantified both the amount of inhibitor and the concentration of C3 retained in the vitreous of Cp40-KKK-injected animals. Cp40-KKK displays prolonged intraocular residence, being detected at C3-saturating levels for over 3 months after a single intravitreal injection. Moreover, we have probed the distribution of Cp40-KKK within the ocular tissue by means of immunohistochemistry and highly specific anti-Cp40-KKK antibodies. Both C3 and Cp40-KKK were detected in the retinal tissue of inhibitor-injected animals, with prominent co-localization in the choroid one-month post intravitreal injection. These results attest to the high retinal tissue penetrance and target-driven distribution of Cp40-KKK. Given its subnanomolar binding affinity and prolonged ocular residence, Cp40-KKK constitutes a promising drug candidate for ocular pathologies underpinned by deregulated C3 activation.
Farinha C, Cachulo ML, Coimbra R, Alves D, Nunes S, Pires I, Marques JP, Costa J, Martins A, Sobral I, Barreto P, Laíns I, Figueira J, Ribeiro L, Cunha-Vaz J, Silva R. Age-Related Macular Degeneration Staging by Color Fundus Photography vs. Multimodal Imaging-Epidemiological Implications (). J Clin Med 2020;9(5)Abstract
Epidemiology of age-related macular degeneration (AMD) is based on staging systems relying on color fundus photography (CFP). We aim to compare AMD staging using CFP to multimodal imaging with optical coherence tomography (OCT), infra-red (IR), and fundus autofluorescence (FAF), in a large cohort from the Epidemiologic AMD Coimbra Eye Study. All imaging exams from the participants of this population-based study were classified by a central reading center. CFP images were graded according to the International Classification and Grading System for AMD and staged with Rotterdam classification. Afterward, CFP images were reviewed with OCT, IR, and FAF and stage update was performed if necessary. Early and late AMD prevalence was compared in a total of 1616 included subjects. In CFP-based grading, the prevalence was 14.11% for early AMD ( = 228) and 1.05% ( = 17) for late AMD, nine cases (0.56%) had neovascular AMD (nAMD) and eight (0.50%) geographic atrophy (GA). Using multimodal grading, the prevalence increased to 14.60% for early AMD ( = 236) and 1.61% ( = 26) for late AMD, with 14 cases (0.87%) of nAMD and 12 (0.74%) of GA. AMD staging was more accurate with the multimodal approach and this was especially relevant for late AMD. We propose that multimodal imaging should be adopted in the future to better estimate and compare epidemiological data in different populations.
Papadopoulos Z. Neovascular age-related macular degeneration and its association with Alzheimer's disease. Curr Aging Sci 2020;Abstract
In developed countries, people of advanced age go permanently blind most often due to age-related macular degeneration, while at global level, this disease is the third major cause of blindness, after cataract and glaucoma, according to the World Health Organisation. The number of individuals believed to suffer from the disease throughout the world has been approximated at 50 million. Age-related macular degeneration is classified as non-neovascular (dry, non-exudative) and neovascular (wet, exudative). The exudative form is less common than the non-exudative as it accounts for approximately 10 percent of the cases of the disease. However, it can be much more aggressive and results in a rapid and severe loss of central vision. Similarly with age-related macular degeneration, Alzheimer's disease is a late-onset, neurodegenerative disease affecting millions of people worldwide. Both of them are associated with age and share several features, including the presence of extracellular abnormal deposits associated with neuronal degeneration, drusen, and plaques, respectively. The present review article highlights the pathogenesis, the clinical features and the imaging modalities used for the diagnosis of neovascular age-related macular degeneration. A thorough overview of the effectiveness of anti-VEGF agents as well as of other treatment modalities that have either lost favour or are rarely used is provided in detail. Additionally, the common histologic, immunologic, and pathogenetic features of Alzheimer's disease and age-related macular degeneration are discussed in depth.
Rodriguez JD, Wallstrom G, Narayanan D, Welch D, Abelson MB. An Alternative Psychophysical Diagnostic Indicator of the Aging Eye. J Ophthalmol 2019;2019:2036192.Abstract
Purpose: Impaired adaptation to changes in lighting levels as well as mesopic visual function is a common complaint in those over the age of 65. The use of photostress is a well-established method to test the adaption rate and the response of the visual cycle. In this study, we test visual function recovery to mesopic luminance stimuli following a long duration photostress in young and elderly subjects. If successful in strongly differentiating aging macular function, these methods may also be useful in the study of pathologies such as age-related macular degeneration. Methods: A group of 12 older normal subjects (mean age 75.1 ± 4.79) and a control group of 5 younger normal subjects (mean age 26.2 ± 4.19) were subjected to macular photostress using the OraLux photostress system. The OraLux system provides a diffuse light source bleaching 84% of cone photopigment while maintaining an exposure safety factor of 200 times less than the maximum safe exposure. After each photostressing session, macular recovery was tracked using a foveal, variable contrast, flickering stimulus of mean luminance in the high mesopic range. Recovery was tracked for 300 seconds. The endpoint was time to recovery to each individual's baseline sensitivity as determined by two static sensitivity trials prior to photostress. Results: Proportional hazards analysis of recovery time yielded a statistically significant difference between the older group and the young group (HR = 0.181; =0.0289). The estimated hazard ratio of 0.181 indicates that older subjects return to baseline at less than one-fifth the rate of younger subjects. The hazards ratio remained statistically significant after adjusting for visual acuity (HR = 0.093; =0.0424). Conclusion: Photostress recovery of flicker sensitivity under mesopic conditions is a strong differentiator of aging macular function. This agrees with subject-reported complaints in reduced luminance conditions after exposure to bright lights such as night driving. The qualitative similarity between the aging retina and changes in early AMD suggests that flicker recovery following photostress may be useful as a surrogate endpoint in AMD clinical trials.
Menon M, Mohammadi S, Davila-Velderrain J, Goods BA, Cadwell TD, Xing Y, Stemmer-Rachamimov A, Shalek AK, Love JC, Kellis M, Hafler BP. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun 2019;10(1):4902.Abstract
Genome-wide association studies (GWAS) have identified genetic variants associated with age-related macular degeneration (AMD), one of the leading causes of blindness in the elderly. However, it has been challenging to identify the cell types associated with AMD given the genetic complexity of the disease. Here we perform massively parallel single-cell RNA sequencing (scRNA-seq) of human retinas using two independent platforms, and report the first single-cell transcriptomic atlas of the human retina. Using a multi-resolution network-based analysis, we identify all major retinal cell types, and their corresponding gene expression signatures. Heterogeneity is observed within macroglia, suggesting that human retinal glia are more diverse than previously thought. Finally, GWAS-based enrichment analysis identifies glia, vascular cells, and cone photoreceptors to be associated with the risk of AMD. These data provide a detailed analysis of the human retina, and show how scRNA-seq can provide insight into cell types involved in complex, inflammatory genetic diseases.
Miller JW. Developing Therapies for Age-related Macular Degeneration: The Art and Science of Problem-solving: The 2018 Charles L. Schepens, MD, Lecture. Ophthalmol Retina 2019;3(10):900-909.Abstract
PURPOSE: To review the roles of analytic and innovative thought in advancing knowledge, using past examples in ophthalmology, and to explore potential strategies to improve our understanding of age-related macular degeneration (AMD) and develop new therapies. DESIGN: Presented as the 2018 Charles L. Schepens, MD, Lecture at the American Academy of Ophthalmology Retina Subspecialty Day, Chicago, Illinois, on October 26, 2018. PARTICIPANTS: None. METHODS: Review of published literature and sources on creativity and innovation. MAIN OUTCOME MEASURES: Recommendations for future AMD research. RESULTS: Innovative solutions to problems often seem intuitively obvious in hindsight. Yet, some problems seem impossible to solve. In the 1990s, AMD was a significant unmet need, with only destructive therapies for neovascular disease. This changed with the development of 2 therapies: (1) verteporfin photodynamic therapy (PDT) and (2) anti-vascular endothelial growth factor (VEGF) therapies, which are now administered to millions of people annually around the world. Now, we are frustrated by the lack of therapies for early and intermediate AMD and geographic atrophy. Photodynamic therapy and anti-VEGF drug development occurred through a combination of analytic thought and creative disruption through innovation. To get past our current impasse in understanding and treating AMD, we need to harness both analysis and innovation. We have many important building blocks in place-information on genetics, clinical findings, imaging, and histology-and have identified key pathways and potential therapeutic targets. Perhaps we need additional investigation, analysis, and integration to improve our understanding through work on structure/function and genotype/phenotype correlations and development of imaging and systemic biomarkers. We likely also need an innovative disruption. This innovation might be the concept that there are subtypes of early and intermediate AMD characterized by specific clinical phenotypes, genotype, functional characteristics, and biomarkers that are dependent on particular pathways and treatable with a specific agent. We need to encourage innovation in each of us within our research and clinical community. CONCLUSIONS: Although we have accumulated extensive knowledge about AMD, we are currently at an impasse in the development of new treatments. We need to continue the analytic process, but at the same time encourage innovative disruption to develop successful AMD therapies.