Age-related Macular Degeneration

Fu Z, Lofqvist CA, Shao Z, Sun Y, Joyal J-S, Hurst CG, Cui RZ, Evans LP, Tian K, SanGiovanni JP, Chen J, Ley D, Hansen Pupp I, Hellstrom A, Smith LEH. Dietary ω-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose-endoplasmic reticulum stress reduction to increase adiponectin. Am J Clin Nutr 2015;101(4):879-88.Abstract

BACKGROUND: Retinopathy of prematurity (ROP) is a vision-threatening disease in premature infants. Serum adiponectin (APN) concentrations positively correlate with postnatal growth and gestational age, important risk factors for ROP development. Dietary ω-3 (n-3) long-chain polyunsaturated fatty acids (ω-3 LCPUFAs) suppress ROP and oxygen-induced retinopathy (OIR) in a mouse model of human ROP, but the mechanism is not fully understood. OBJECTIVE: We examined the role of APN in ROP development and whether circulating APN concentrations are increased by dietary ω-3 LCPUFAs to mediate the protective effect in ROP. DESIGN: Serum APN concentrations were correlated with ROP development and serum ω-3 LCPUFA concentrations in preterm infants. Mouse OIR was then used to determine whether ω-3 LCPUFA supplementation increases serum APN concentrations, which then suppress retinopathy. RESULTS: We found that in preterm infants, low serum APN concentrations positively correlate with ROP, and serum APN concentrations positively correlate with serum ω-3 LCPUFA concentrations. In mouse OIR, serum total APN and bioactive high-molecular-weight APN concentrations are increased by ω-3 LCPUFA feed. White adipose tissue, where APN is produced and assembled in the endoplasmic reticulum, is the major source of serum APN. In mouse OIR, adipose endoplasmic reticulum stress is increased, and APN production is suppressed. ω-3 LCPUFA feed in mice increases APN production by reducing adipose endoplasmic reticulum stress markers. Dietary ω-3 LCPUFA suppression of neovascularization is reduced from 70% to 10% with APN deficiency. APN receptors localize in the retina, particularly to pathologic neovessels. CONCLUSION: Our findings suggest that increasing APN by ω-3 LCPUFA supplementation in total parental nutrition for preterm infants may suppress ROP.

Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman J-P, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015;385(9967):509-16.Abstract

BACKGROUND: Since they were first derived more than three decades ago, embryonic stem cells have been proposed as a source of replacement cells in regenerative medicine, but their plasticity and unlimited capacity for self-renewal raises concerns about their safety, including tumour formation ability, potential immune rejection, and the risk of differentiating into unwanted cell types. We report the medium-term to long-term safety of cells derived from human embryonic stem cells (hESC) transplanted into patients. METHODS: In the USA, two prospective phase 1/2 studies were done to assess the primary endpoints safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium in nine patients with Stargardt's macular dystrophy (age >18 years) and nine with atrophic age-related macular degeneration (age >55 years). Three dose cohorts (50,000, 100,000, and 150,000 cells) were treated for each eye disorder. Transplanted patients were followed up for a median of 22 months by use of serial systemic, ophthalmic, and imaging examinations. The studies are registered with, numbers NCT01345006 (Stargardt's macular dystrophy) and NCT01344993 (age-related macular degeneration). FINDINGS: There was no evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue. Adverse events were associated with vitreoretinal surgery and immunosuppression. 13 (72%) of 18 patients had patches of increasing subretinal pigmentation consistent with transplanted retinal pigment epithelium. Best-corrected visual acuity, monitored as part of the safety protocol, improved in ten eyes, improved or remained the same in seven eyes, and decreased by more than ten letters in one eye, whereas the untreated fellow eyes did not show similar improvements in visual acuity. Vision-related quality-of-life measures increased for general and peripheral vision, and near and distance activities, improving by 16-25 points 3-12 months after transplantation in patients with atrophic age-related macular degeneration and 8-20 points in patients with Stargardt's macular dystrophy. INTERPRETATION: The results of this study provide the first evidence of the medium-term to long-term safety, graft survival, and possible biological activity of pluripotent stem cell progeny in individuals with any disease. Our results suggest that hESC-derived cells could provide a potentially safe new source of cells for the treatment of various unmet medical disorders requiring tissue repair or replacement. FUNDING: Advanced Cell Technology.

Zandi S, Nakao S, Chun K-H, Fiorina P, Sun D, Arita R, Zhao M, Kim E, Schueller O, Campbell S, Taher M, Melhorn MI, Schering A, Gatti F, Tezza S, Xie F, Vergani A, Yoshida S, Ishikawa K, Yamaguchi M, Sasaki F, Schmidt-Ullrich R, Hata Y, Enaida H, Yuzawa M, Yokomizo T, Kim Y-B, Sweetnam P, Ishibashi T, Hafezi-Moghadam A. ROCK-Isoform-Specific Polarization of Macrophages Associated with Age-Related Macular Degeneration. Cell Rep 2015;10(7):1173-86.Abstract

Age is a major risk factor in age-related macular degeneration (AMD), but the underlying cause is unknown. We find increased Rho-associated kinase (ROCK) signaling and M2 characteristics in eyes of aged mice, revealing immune changes in aging. ROCK isoforms determine macrophage polarization into M1 and M2 subtypes. M2-like macrophages accumulated in AMD, but not in normal eyes, suggesting that these macrophages may be linked to macular degeneration. M2 macrophages injected into the mouse eye exacerbated choroidal neovascular lesions, while M1 macrophages ameliorated them, supporting a causal role for macrophage subtypes in AMD. Selective ROCK2 inhibition with a small molecule decreased M2-like macrophages and choroidal neovascularization. ROCK2 inhibition upregulated M1 markers without affecting macrophage recruitment, underlining the plasticity of these macrophages. These results reveal age-induced innate immune imbalance as underlying AMD pathogenesis. Targeting macrophage plasticity opens up new possibilities for more effective AMD treatment.

Dedania VS, Grob S, Zhang K, Bakri SJ. Pharmacogenomics of response to anti-VEGF therapy in exudative age-related macular degeneration. Retina 2015;35(3):381-91.Abstract

PURPOSE: To determine whether there is an association between response to intravitreal anti-vascular endothelial growth factor agents and genotype in patients with neovascular age-related macular degeneration. METHODS: Analysis of the current literature evaluating pharmacogenetics of treatment response in patients with neovascular age-related macular degeneration. RESULTS: Studies have demonstrated associations between various genotypes and response to intravitreal anti-vascular endothelial growth factor agents. Lower-risk genotypes of the CFH, ARMS2, HTRA1, and VEGF-A genes may be associated with improved visual outcomes. Additionally, frequency of injections may be associated with certain genotypes. CONCLUSION: Genetic background may influence an individual's response to treatment of neovascular age-related macular degeneration. Further studies to investigate biologic pathways of neovascular age-related macular degeneration and gene products that are directly involved might lead to better understanding of contribution of various genes to treatment response.

Wagley S, Marra KV, Salhi RA, Gautam S, Campo R, Veale P, Veale J, Arroyo JG. PERIODONTAL DISEASE AND AGE-RELATED MACULAR DEGENERATION: Results From the National Health and Nutrition Examination Survey III. Retina 2015;35(5):982-8.Abstract

PURPOSE: To study the association between periodontal disease (PD) and age-related macular degeneration (AMD). METHODS: For this cross-sectional analysis, 8,208 adults aged 40 years or older with retinal photographs graded for AMD were used from the National Health and Nutrition Examination Survey III. National Health and Nutrition Examination Survey III standardized dental measurements of PD status (defined as loss of >3 mm of attachment between the gum and tooth in at least 10% of sites measured). Participants were stratified into 60 years or younger and older than 60 years of age groups. Association between PD and AMD was assessed while controlling for sex, race, education, poverty income ratio, smoking, hypertension, body mass index, cardiovascular disease, and C-reactive protein. RESULTS: In this population, a total of 52.30% had PD, and the prevalence of AMD was 11.45%. Logistic regression model controlled for confounders and stratified by age 60 years or younger versus older than 60 years showed PD to be independently associated with an increased risk for AMD (odds ratio = 1.96, 95% confidence interval = 1.22-3.14, P = 0.006) for those aged 60 years or younger but not for subjects older than 60 years (odds ratio = 1.32, confidence interval = 0.93-1.90, P = 0.120). CONCLUSION: In this population-based study, PD is independently associated with AMD in those aged 60 years or younger.

Wu J, Uchino M, Sastry SM, Schaumberg DA. Age-related macular degeneration and the incidence of cardiovascular disease: a systematic review and meta-analysis. PLoS One 2014;9(3):e89600.Abstract
IMPORTANCE: Research has indicated some shared pathogenic mechanisms between age-related macular degeneration (AMD) and cardiovascular disease (CVD). However, results from prior epidemiologic studies have been inconsistent as to whether AMD is predictive of future CVD risk. OBJECTIVE: To systematically review population-based cohort studies of the association between AMD and risk of total CVD and CVD subtypes, coronary heart disease (CHD) and stroke. DATA SOURCES: A systematic search of the PubMed and EMBASE databases and reference lists of key retrieved articles up to December 20, 2012 without language restriction. DATA EXTRACTION: Two reviewers independently extracted data on baseline AMD status, risk estimates of CVD and methods used to assess AMD and CVD. We pooled relative risks using random or fixed effects models as appropriate. RESULTS: Thirteen cohort studies (8 prospective and 5 retrospective studies) with a total of 1,593,390 participants with 155,500 CVD events (92,039 stroke and 62,737 CHD) were included in this meta-analysis. Among all studies, early AMD was associated with a 15% (95% CI, 1.08-1.22) increased risk of total CVD. The relative risk was similar but not significant for late AMD (RR, 1.17; 95% CI, 0.98-1.40). In analyses restricted to the subset of prospective studies, the risk associated with early AMD did not appreciably change; however, there was a marked 66% (95% CI, 1.31-2.10) increased risk of CVD among those with late AMD. CONCLUSION: Whereas the results from all cohort studies suggest that both early and late AMD are predictive of a small increase in risk of future CVD, subgroup analyses limited to prospective studies demonstrate a markedly increased risk of CVD among people with late AMD. Retrospective studies using healthcare databases may have inherent methodological limitations that obscure such association. Additional prospective studies are needed to further elucidate the associations between AMD and specific CVD outcomes.
Wu EW, Schaumberg DA, Park SK. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: the National Health and Nutrition Examination Survey 2005 to 2008. Environ Res 2014;133:178-84.Abstract
Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005-2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02-2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91-2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37-8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40-5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn.
Sobrin L, Seddon JM. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog Retin Eye Res 2014;40:1-15.Abstract
Age-related macular degeneration (AMD) is a common cause of irreversible visual loss and the disease burden is rising world-wide as the population ages. Both environmental and genetic factors contribute to the development of this disease. Among environmental factors, smoking, obesity and dietary factors including antioxidants and dietary fat intake influence onset and progression of AMD. There are also several lines of evidence that link cardiovascular, immune and inflammatory biomarkers to AMD. The genetic etiology of AMD has been and continues to be an intense and fruitful area of investigation. Genome-wide association studies have revealed numerous common variants associated with AMD and sequencing is increasing our knowledge of how rare genetic variants strongly impact disease. Evidence for interactions between environmental, therapeutic and genetic factors is emerging and elucidating the mechanisms of this interplay remains a major challenge in the field. Genotype-phenotype associations are evolving. The knowledge of non-genetic, modifiable risk factors along with information about heritability and genetic risk variants for this disease acquired over the past 25 years have greatly improved patient management and our ability to predict which patients will develop or progress to advanced forms of AMD. Personalized medicine and individualized prevention and treatment strategies may become a reality in the near future.
Schaumberg DA, Rose L, Deangelis MM, Semba RD, Hageman GS, Chasman DI. Prospective study of common variants in CX3CR1 and risk of macular degeneration: pooled analysis from 5 long-term studies. JAMA Ophthalmol 2014;132(1):84-95.Abstract
IMPORTANCE: The CX3CR1 gene is implicated as a candidate gene for age-related macular degeneration (AMD) through several lines of evidence. There is uncertainty, however, as to whether common genetic variants in CX3CR1 alter risk of AMD, since prior studies have been inconsistent and mostly limited to evaluation of 2 nonsynonymous variants, T280M (rs3732378) and V249I (rs3732379). OBJECTIVE: To determine if common variants in CX3CR1 predict future risk of AMD. DESIGN, SETTING, AND PARTICIPANTS: Prospective nested case-control study within 5 large study populations with long-term follow-up. We measured genotypes for T280M, V249I, and 13 other common single-nucleotide polymorphisms (SNPs) of the CX3CR1 gene among people who developed AMD (n = 1110, including 369 with neovascular AMD) and 2532 age- and sex-matched controls. MAIN OUTCOMES AND MEASURES: We determined the incidence rate ratios (RR) and 95% CIs for incidence of AMD for each variant and examined interactions with other AMD-associated variants and modifiable risk factors. RESULTS: In additive genetic models, we identified nonsignificant associations with AMD for T280M (RR, 0.87; P = .07) and 3 other SNPs, rs2853707 (RR, 0.88; P = .07), rs12636547 (RR, 0.85; P = .10), and rs1877563 (RR, 0.84; P = .06), 1 of which, rs2853707, is positioned in the CX3CR1 promoter region and was associated with neovascular AMD (RR, 0.75; P = .03). We observed that a recessive model was a better fit to the data for some SNPs, with associations between rs11715522 and AMD (RR, 1.27; P = .03) and between rs2669845 (RR, 3.10; P = .04), rs2853707 (RR, 0.48; P = .050), and rs9868689 (RR, 0.31; P = .02) and neovascular AMD. Moreover, in exploratory analyses, we identified a number of possible interactions including between V249I and rs2669845 and dietary intake of ω-3 fatty acids (P = .004 and P = .009, respectively) for AMD; between rs2669845 and obesity (P = .03) for neovascular AMD; between T280M and complement component 3 (C3) R102G for AMD (P = .03); between rs2669845 and Y402H in complement factor H for AMD (P = .04); and between rs2669845, rs2853707, and V249I and C3 R102G for neovascular AMD (P = .008; .04; and .002, respectively). CONCLUSIONS AND RELEVANCE: This study failed to identify significant associations between common CX3CR1 variants and AMD after considering the number of SNPs analyzed and multiple comparisons. However, we observed evidence consistent with recessive modes of association and that an effect of CX3CR1 variants may depend on other factors including dietary intake of ω-3 fatty acids, obesity, and genotypes at CFH Y402H and C3 R102G. If replicated in other populations, these findings would support a role for CX3CR1 in AMD but also suggest that its role may involve mechanisms that are independent of the T280M/V249I variations.
Owen LA, Morrison MA, Ahn J, Woo SJ, Sato H, Robinson R, Morgan DJ, Zacharaki F, Simeonova M, Uehara H, Chakravarthy U, Hogg RE, Ambati BK, Kotoula M, Baehr W, Haider NB, Silvestri G, Miller JW, Tsironi EE, Farrer LA, Kim IK, Park KH, Deangelis MM. FLT1 genetic variation predisposes to neovascular AMD in ethnically diverse populations and alters systemic FLT1 expression. Invest Ophthalmol Vis Sci 2014;55(6):3543-54.Abstract
PURPOSE: Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway. METHODS: Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis. RESULTS: The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway. CONCLUSIONS: Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.
Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express 2014;5(10):3568-77.Abstract

We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases.

Wiecek E, Lashkari K, Dakin S, Bex PJ. Novel Quantitative Assessment of Metamorphopsia in Maculopathy. Invest Ophthalmol Vis Sci 2014;Abstract

Purpose: Patients with macular disease often report experiencing metamorphopsia (visual distortion). Although typically measured with Amsler charts, more objective and quantitative assessments of perceived distortion are desirable to effectively monitor the presence, progression and remediation of visual impairment. Methods: Participants with binocular (n = 33) and monocular (n= 50) maculopathy across seven disease groups, and control participants (n = 10) with no identifiable retinal disease completed a modified Amsler Grid assessment (presented on a computer screen with eye tracking to ensure fixation compliance) and two novel objective measures of metamorphopsia in the central five degrees of visual field. 81% (67/83) of participants completed a task requiring them to configure eight dots in the shape of a square, and 64% (32/50) of participants experiencing monocular distortion completed a spatial alignment task using dichoptic stimuli. 10 controls completed all tasks. Results: Horizontal and vertical distortion magnitudes were calculated for each of the three assessments. Distortion magnitudes were significantly higher in patients than controls in all assessments. There was no significant difference in magnitude of distortion across different macular diseases. Among patients, there were no significant correlations between overall magnitude of distortion among any of the three measures and no significant correlations in localized measures of distortion. Conclusions: Three alternative quantifications of monocular spatial distortion in the central visual field generated uncorrelated estimates of visual distortion. It is therefore unlikely that metamorphopsia is caused solely by displacement of photoreceptors in the retina, but instead involves additional top-down information, knowledge about the scene, and perhaps, cortical reorganization.

Rezende FA, Lapalme E, Qian CX, Smith LE, SanGiovanni JP, Sapieha P. Omega-3 supplementation combined with anti-vascular endothelial growth factor lowers vitreal levels of vascular endothelial growth factor in wet age-related macular degeneration. Am J Ophthalmol 2014;158(5):1071-1078.e1.Abstract
PURPOSE: To determine the influence of omega-3 supplementation on vitreous vascular endothelial growth factor A (VEGF-A) levels in patients with exudative age-related macular degeneration (wet AMD) receiving intravitreal anti-VEGF treatment. DESIGN: Prospective, randomized, open-label, single-center, clinical trial, consecutive interventional case series. METHODS: The study included 3 cohorts with wet AMD and a control group with epiretinal membrane or macular hole. Twenty wet AMD patients being treated with anti-VEGF were randomized to daily supplementation of antioxidants, zinc, and carotenoids with omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid; group 1, n = 10) or without omega-3 fatty acids (group 2, n = 10). They were compared with an anti-VEGF treatment-naïve wet AMD group (group 3, n = 10) and an epiretinal membrane or macular hole group (group 4, n = 10). Primary outcome was vitreal VEGF-A levels (at the time of anti-VEGF injection). Secondary outcomes were plasma VEGF-A and central foveal thickness. Patients with new submacular hemorrhage or any other treatment within 3 months were excluded. Final analyses included 9, 6, 7, and 8 patients in groups 1 through 4, respectively. RESULTS: Patients receiving omega-3s (group 1) had significantly lower levels of vitreal VEGF-A (141.11 ± 61.89 pg/mL) when compared with group 2 (626.09 ± 279.27 pg/mL; P = .036) and group 3 (735.48 ± 216.43 pg/mL; P = .013), but similar levels to group 4 (235.81 ± 33.99 pg/mL; P = .215). All groups showed similar values for plasma VEGF-A and central foveal thickness measurements. CONCLUSIONS: This study demonstrated that omega-3 supplementation combined with anti-VEGF treatment is associated with decreased vitreal VEGF-A levels in wet AMD patients.
Panigrahy D, Adini I, Mamluk R, Levonyak N, Bruns CJ, D'Amore PA, Klagsbrun M, Bielenberg DR. Regulation of soluble neuropilin 1, an endogenous angiogenesis inhibitor, in liver development and regeneration. Pathology 2014;46(5):416-23.Abstract

Neuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF). A soluble isoform of Nrp1 (sNrp1) has not been described in the mouse. Our goal was to examine the expression of mouse sNrp1 during liver development and regeneration.sNrp1 was cloned from mouse liver. The expression of sNrp1 and VEGF was examined in mouse liver during post-natal development and regeneration using northern blot, western blot, in situ hybridisation, and immunohistochemical analyses. HGF/NRP1 binding was examined in vitro.A novel 588-amino acid sNrp1 isoform was found to contain the ligand binding regions of Nrp1. The adult liver expressed more sNrp1 than full-length Nrp1. In vivo, hepatocytes constitutively expressed VEGF and sNrp1 in the quiescent state. sNrp1 was highly up-regulated at P20, a time point coinciding with a plateau in liver and body weights. Following hepatectomy, endogenous levels of sNrp1 decreased during the rapid growth phase, and VEGF levels were highest just prior to and during the angiogenic phase. sNrp1 levels again rose 5-10 days post-hepatectomy, presumably to control regeneration. HGF protein bound NRP1 and binding was competed with sNRP1.We cloned a novel mouse sNrp1 isoform from liver and provide evidence that this endogenous angiogenesis inhibitor may regulate VEGF or HGF bioavailability during normal physiological growth and development as well as during liver regeneration.

Yanai R, Mulki L, Hasegawa E, Takeuchi K, Sweigard H, Suzuki J, Gaissert P, Vavvas DG, Sonoda K-H, Rothe M, Schunck W-H, Miller JW, Connor KM. Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization. Proc Natl Acad Sci U S A 2014;111(26):9603-8.Abstract
Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)-epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD.