Age-related Macular Degeneration

Wu J, Uchino M, Sastry SM, Schaumberg DA. Age-related macular degeneration and the incidence of cardiovascular disease: a systematic review and meta-analysis. PLoS One 2014;9(3):e89600.Abstract
IMPORTANCE: Research has indicated some shared pathogenic mechanisms between age-related macular degeneration (AMD) and cardiovascular disease (CVD). However, results from prior epidemiologic studies have been inconsistent as to whether AMD is predictive of future CVD risk. OBJECTIVE: To systematically review population-based cohort studies of the association between AMD and risk of total CVD and CVD subtypes, coronary heart disease (CHD) and stroke. DATA SOURCES: A systematic search of the PubMed and EMBASE databases and reference lists of key retrieved articles up to December 20, 2012 without language restriction. DATA EXTRACTION: Two reviewers independently extracted data on baseline AMD status, risk estimates of CVD and methods used to assess AMD and CVD. We pooled relative risks using random or fixed effects models as appropriate. RESULTS: Thirteen cohort studies (8 prospective and 5 retrospective studies) with a total of 1,593,390 participants with 155,500 CVD events (92,039 stroke and 62,737 CHD) were included in this meta-analysis. Among all studies, early AMD was associated with a 15% (95% CI, 1.08-1.22) increased risk of total CVD. The relative risk was similar but not significant for late AMD (RR, 1.17; 95% CI, 0.98-1.40). In analyses restricted to the subset of prospective studies, the risk associated with early AMD did not appreciably change; however, there was a marked 66% (95% CI, 1.31-2.10) increased risk of CVD among those with late AMD. CONCLUSION: Whereas the results from all cohort studies suggest that both early and late AMD are predictive of a small increase in risk of future CVD, subgroup analyses limited to prospective studies demonstrate a markedly increased risk of CVD among people with late AMD. Retrospective studies using healthcare databases may have inherent methodological limitations that obscure such association. Additional prospective studies are needed to further elucidate the associations between AMD and specific CVD outcomes.
Wu EW, Schaumberg DA, Park SK. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: the National Health and Nutrition Examination Survey 2005 to 2008. Environ Res 2014;133:178-84.Abstract
Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005-2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02-2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91-2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37-8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40-5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn.
Sobrin L, Seddon JM. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog Retin Eye Res 2014;40:1-15.Abstract
Age-related macular degeneration (AMD) is a common cause of irreversible visual loss and the disease burden is rising world-wide as the population ages. Both environmental and genetic factors contribute to the development of this disease. Among environmental factors, smoking, obesity and dietary factors including antioxidants and dietary fat intake influence onset and progression of AMD. There are also several lines of evidence that link cardiovascular, immune and inflammatory biomarkers to AMD. The genetic etiology of AMD has been and continues to be an intense and fruitful area of investigation. Genome-wide association studies have revealed numerous common variants associated with AMD and sequencing is increasing our knowledge of how rare genetic variants strongly impact disease. Evidence for interactions between environmental, therapeutic and genetic factors is emerging and elucidating the mechanisms of this interplay remains a major challenge in the field. Genotype-phenotype associations are evolving. The knowledge of non-genetic, modifiable risk factors along with information about heritability and genetic risk variants for this disease acquired over the past 25 years have greatly improved patient management and our ability to predict which patients will develop or progress to advanced forms of AMD. Personalized medicine and individualized prevention and treatment strategies may become a reality in the near future.
Schaumberg DA, Rose L, Deangelis MM, Semba RD, Hageman GS, Chasman DI. Prospective study of common variants in CX3CR1 and risk of macular degeneration: pooled analysis from 5 long-term studies. JAMA Ophthalmol 2014;132(1):84-95.Abstract
IMPORTANCE: The CX3CR1 gene is implicated as a candidate gene for age-related macular degeneration (AMD) through several lines of evidence. There is uncertainty, however, as to whether common genetic variants in CX3CR1 alter risk of AMD, since prior studies have been inconsistent and mostly limited to evaluation of 2 nonsynonymous variants, T280M (rs3732378) and V249I (rs3732379). OBJECTIVE: To determine if common variants in CX3CR1 predict future risk of AMD. DESIGN, SETTING, AND PARTICIPANTS: Prospective nested case-control study within 5 large study populations with long-term follow-up. We measured genotypes for T280M, V249I, and 13 other common single-nucleotide polymorphisms (SNPs) of the CX3CR1 gene among people who developed AMD (n = 1110, including 369 with neovascular AMD) and 2532 age- and sex-matched controls. MAIN OUTCOMES AND MEASURES: We determined the incidence rate ratios (RR) and 95% CIs for incidence of AMD for each variant and examined interactions with other AMD-associated variants and modifiable risk factors. RESULTS: In additive genetic models, we identified nonsignificant associations with AMD for T280M (RR, 0.87; P = .07) and 3 other SNPs, rs2853707 (RR, 0.88; P = .07), rs12636547 (RR, 0.85; P = .10), and rs1877563 (RR, 0.84; P = .06), 1 of which, rs2853707, is positioned in the CX3CR1 promoter region and was associated with neovascular AMD (RR, 0.75; P = .03). We observed that a recessive model was a better fit to the data for some SNPs, with associations between rs11715522 and AMD (RR, 1.27; P = .03) and between rs2669845 (RR, 3.10; P = .04), rs2853707 (RR, 0.48; P = .050), and rs9868689 (RR, 0.31; P = .02) and neovascular AMD. Moreover, in exploratory analyses, we identified a number of possible interactions including between V249I and rs2669845 and dietary intake of ω-3 fatty acids (P = .004 and P = .009, respectively) for AMD; between rs2669845 and obesity (P = .03) for neovascular AMD; between T280M and complement component 3 (C3) R102G for AMD (P = .03); between rs2669845 and Y402H in complement factor H for AMD (P = .04); and between rs2669845, rs2853707, and V249I and C3 R102G for neovascular AMD (P = .008; .04; and .002, respectively). CONCLUSIONS AND RELEVANCE: This study failed to identify significant associations between common CX3CR1 variants and AMD after considering the number of SNPs analyzed and multiple comparisons. However, we observed evidence consistent with recessive modes of association and that an effect of CX3CR1 variants may depend on other factors including dietary intake of ω-3 fatty acids, obesity, and genotypes at CFH Y402H and C3 R102G. If replicated in other populations, these findings would support a role for CX3CR1 in AMD but also suggest that its role may involve mechanisms that are independent of the T280M/V249I variations.
Owen LA, Morrison MA, Ahn J, Woo SJ, Sato H, Robinson R, Morgan DJ, Zacharaki F, Simeonova M, Uehara H, Chakravarthy U, Hogg RE, Ambati BK, Kotoula M, Baehr W, Haider NB, Silvestri G, Miller JW, Tsironi EE, Farrer LA, Kim IK, Park KH, Deangelis MM. FLT1 genetic variation predisposes to neovascular AMD in ethnically diverse populations and alters systemic FLT1 expression. Invest Ophthalmol Vis Sci 2014;55(6):3543-54.Abstract
PURPOSE: Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway. METHODS: Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis. RESULTS: The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway. CONCLUSIONS: Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.
Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express 2014;5(10):3568-77.Abstract

We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases.

Wiecek E, Lashkari K, Dakin S, Bex PJ. Novel Quantitative Assessment of Metamorphopsia in Maculopathy. Invest Ophthalmol Vis Sci 2014;Abstract

Purpose: Patients with macular disease often report experiencing metamorphopsia (visual distortion). Although typically measured with Amsler charts, more objective and quantitative assessments of perceived distortion are desirable to effectively monitor the presence, progression and remediation of visual impairment. Methods: Participants with binocular (n = 33) and monocular (n= 50) maculopathy across seven disease groups, and control participants (n = 10) with no identifiable retinal disease completed a modified Amsler Grid assessment (presented on a computer screen with eye tracking to ensure fixation compliance) and two novel objective measures of metamorphopsia in the central five degrees of visual field. 81% (67/83) of participants completed a task requiring them to configure eight dots in the shape of a square, and 64% (32/50) of participants experiencing monocular distortion completed a spatial alignment task using dichoptic stimuli. 10 controls completed all tasks. Results: Horizontal and vertical distortion magnitudes were calculated for each of the three assessments. Distortion magnitudes were significantly higher in patients than controls in all assessments. There was no significant difference in magnitude of distortion across different macular diseases. Among patients, there were no significant correlations between overall magnitude of distortion among any of the three measures and no significant correlations in localized measures of distortion. Conclusions: Three alternative quantifications of monocular spatial distortion in the central visual field generated uncorrelated estimates of visual distortion. It is therefore unlikely that metamorphopsia is caused solely by displacement of photoreceptors in the retina, but instead involves additional top-down information, knowledge about the scene, and perhaps, cortical reorganization.

Rezende FA, Lapalme E, Qian CX, Smith LE, SanGiovanni JP, Sapieha P. Omega-3 supplementation combined with anti-vascular endothelial growth factor lowers vitreal levels of vascular endothelial growth factor in wet age-related macular degeneration. Am J Ophthalmol 2014;158(5):1071-1078.e1.Abstract
PURPOSE: To determine the influence of omega-3 supplementation on vitreous vascular endothelial growth factor A (VEGF-A) levels in patients with exudative age-related macular degeneration (wet AMD) receiving intravitreal anti-VEGF treatment. DESIGN: Prospective, randomized, open-label, single-center, clinical trial, consecutive interventional case series. METHODS: The study included 3 cohorts with wet AMD and a control group with epiretinal membrane or macular hole. Twenty wet AMD patients being treated with anti-VEGF were randomized to daily supplementation of antioxidants, zinc, and carotenoids with omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid; group 1, n = 10) or without omega-3 fatty acids (group 2, n = 10). They were compared with an anti-VEGF treatment-naïve wet AMD group (group 3, n = 10) and an epiretinal membrane or macular hole group (group 4, n = 10). Primary outcome was vitreal VEGF-A levels (at the time of anti-VEGF injection). Secondary outcomes were plasma VEGF-A and central foveal thickness. Patients with new submacular hemorrhage or any other treatment within 3 months were excluded. Final analyses included 9, 6, 7, and 8 patients in groups 1 through 4, respectively. RESULTS: Patients receiving omega-3s (group 1) had significantly lower levels of vitreal VEGF-A (141.11 ± 61.89 pg/mL) when compared with group 2 (626.09 ± 279.27 pg/mL; P = .036) and group 3 (735.48 ± 216.43 pg/mL; P = .013), but similar levels to group 4 (235.81 ± 33.99 pg/mL; P = .215). All groups showed similar values for plasma VEGF-A and central foveal thickness measurements. CONCLUSIONS: This study demonstrated that omega-3 supplementation combined with anti-VEGF treatment is associated with decreased vitreal VEGF-A levels in wet AMD patients.
Panigrahy D, Adini I, Mamluk R, Levonyak N, Bruns CJ, D'Amore PA, Klagsbrun M, Bielenberg DR. Regulation of soluble neuropilin 1, an endogenous angiogenesis inhibitor, in liver development and regeneration. Pathology 2014;46(5):416-23.Abstract

Neuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF). A soluble isoform of Nrp1 (sNrp1) has not been described in the mouse. Our goal was to examine the expression of mouse sNrp1 during liver development and regeneration.sNrp1 was cloned from mouse liver. The expression of sNrp1 and VEGF was examined in mouse liver during post-natal development and regeneration using northern blot, western blot, in situ hybridisation, and immunohistochemical analyses. HGF/NRP1 binding was examined in vitro.A novel 588-amino acid sNrp1 isoform was found to contain the ligand binding regions of Nrp1. The adult liver expressed more sNrp1 than full-length Nrp1. In vivo, hepatocytes constitutively expressed VEGF and sNrp1 in the quiescent state. sNrp1 was highly up-regulated at P20, a time point coinciding with a plateau in liver and body weights. Following hepatectomy, endogenous levels of sNrp1 decreased during the rapid growth phase, and VEGF levels were highest just prior to and during the angiogenic phase. sNrp1 levels again rose 5-10 days post-hepatectomy, presumably to control regeneration. HGF protein bound NRP1 and binding was competed with sNRP1.We cloned a novel mouse sNrp1 isoform from liver and provide evidence that this endogenous angiogenesis inhibitor may regulate VEGF or HGF bioavailability during normal physiological growth and development as well as during liver regeneration.

Yanai R, Mulki L, Hasegawa E, Takeuchi K, Sweigard H, Suzuki J, Gaissert P, Vavvas DG, Sonoda K-H, Rothe M, Schunck W-H, Miller JW, Connor KM. Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization. Proc Natl Acad Sci U S A 2014;111(26):9603-8.Abstract
Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)-epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD.
Kim LA, Amarnani D, Gnanaguru G, Tseng WA, Vavvas DG, D'Amore PA. Tamoxifen toxicity in cultured retinal pigment epithelial cells is mediated by concurrent regulated cell death mechanisms. Invest Ophthalmol Vis Sci 2014;55(8):4747-58.Abstract

PURPOSE: To evaluate the mechanism of tamoxifen-induced cell death in human cultured RPE cells, and to investigate concurrent cell death mechanisms including pyroptosis, apoptosis, and necroptosis. METHODS: Human RPE cells were cultured until confluence and treated with tamoxifen; cell death was measured by detecting LDH release. Tamoxifen-induced cell death was further confirmed by 7-aminoactinomycin D (7-AAD) and annexin V staining. Lysosomal destabilization was assessed using lysosomal-associated membrane protein-1 (LAMP-1) and acridine orange staining. The roles of lysosomal enzymes cathepsin B and L were examined by blocking their activity. Caspase activity was evaluated by caspase-1, -3, -8, and -9 specific inhibition. Cells were primed with IL-1α and treated with tamoxifen; mature IL-1β production was quantified via ELISA. Caspase activity was verified with the fluorochrome-labeled inhibitor of caspases (FLICA) probe specific for each caspase. Regulated cell necrosis or necroptosis was examined with 7-AAD and inhibition of receptor-interacting protein 1 (RIP1) kinase using necrostatin-1 (Nec-1). RESULTS: Cell death occurred within 2 hours of tamoxifen treatment of confluent RPE cells and was accompanied by lysosomal membrane permeabilization. Blockade of cathepsin B and L activity led to a significant decrease in cell death, indicating that lysosomal destabilization and cathepsin release occur prior to regulated cell death. Tamoxifen-induced toxicity was shown to occur through both caspase-dependent and caspase-independent cell death pathways. Treatment of RPE cells with caspase inhibitors and Nec-1 resulted in a near complete rescue from cell death. CONCLUSIONS: Tamoxifen-induced cell death occurs through concurrent regulated cell death mechanisms. Simultaneous inhibition of caspase-dependent and caspase-independent cell death pathways is required to protect cells from tamoxifen. Inhibition of upstream activators, such as the cathepsins, may represent a novel approach to block multiple cell death pathways.

Ratnapriya R, Zhan X, Fariss RN, Branham KE, Zipprer D, Chakarova CF, Sergeev YV, Campos MM, Othman M, Friedman JS, Maminishkis A, Waseem NH, Brooks M, Rajasimha HK, Edwards AO, Lotery A, Klein BE, Truitt BJ, Li B, Schaumberg DA, Morgan DJ, Morrison MA, Souied E, Tsironi EE, Grassmann F, Fishman GA, Silvestri G, Scholl HPN, Kim IK, Ramke J, Tuo J, Merriam JE, Merriam JC, Park KH, Olson LM, Farrer LA, Johnson MP, Peachey NS, Lathrop M, Baron RV, Igo RP, Klein R, Hagstrom SA, Kamatani Y, Martin TM, Jiang Y, Conley Y, Sahel J-A, Zack DJ, Chan C-C, Pericak-Vance MA, Jacobson SG, Gorin MB, Klein ML, Allikmets R, Iyengar SK, Weber BH, Haines JL, Léveillard T, Deangelis MM, Stambolian D, Weeks DE, Bhattacharya SS, Chew EY, Heckenlively JR, Abecasis GR, Swaroop A. Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Hum Mol Genet 2014;23(21):5827-37.Abstract

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene-FBN2-can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.

Yonekawa Y, Kim IK. Clinical Characteristics and Current Treatment of Age-Related Macular Degeneration. Cold Spring Harb Perspect Med 2014;Abstract

Age-related macular degeneration (AMD) is a multifactorial degeneration of photoreceptors and retinal pigment epithelium. The societal impact is significant, with more than 2 million individuals in the United States alone affected by advanced stages of AMD. Recent progress in our understanding of this complex disease and parallel developments in therapeutics and imaging have translated into new management paradigms in recent years. However, there are many unanswered questions, and diagnostic and prognostic precision and treatment outcomes can still be improved. In this article, we discuss the clinical features of AMD, provide correlations with modern imaging and histopathology, and present an overview of treatment strategies.

Pages