Age-related Macular Degeneration

Lin JB, Halawa OA, Husain D, Miller JW, Vavvas DG. Dyslipidemia in age-related macular degeneration. Eye (Lond) 2022;36(2):312-318.Abstract
Lipid-rich drusen are the sine qua non of age-related macular degeneration (AMD), the leading cause of blindness in older adults in the developed world. Efforts directed at uncovering effective therapeutic strategies have led to the hypothesis that altered lipid metabolism may play a pathogenic role in AMD. This hypothesis is supported by the fact that: (1) drusen, the hallmark histopathologic feature of AMD, are composed of lipids, (2) polymorphisms of genes involved in lipid homeostasis are associated with increased odds of AMD, (3) metabolomics studies show that patients with AMD have alterations in metabolites from lipid pathways, and (4) alterations in serum lipid profiles as a reflection of systemic dyslipidemia are associated with AMD. There is strong evidence that statins, which are well described for treating dyslipidemia and reducing risk associated with cardiovascular disease, may have a role for treating certain cohorts of AMD patients, but this has yet to be conclusively proven. Of interest, the specific changes in serum lipoprotein profiles associated with decreased cardiovascular risk (i.e., high HDL levels) have been shown in some studies to be associated with increased risk of AMD. In this review, we highlight the evidence that supports a role for altered lipid metabolism in AMD and provide our perspective regarding the remaining questions that need to be addressed before lipid-based therapies can emerge for specific cohorts of AMD patients.
Lains I, Mendez K, Nigalye A, Katz R, Douglas VP, Kelly RS, Kim IK, Miller JB, Vavvas DG, Liang L, Lasky-Su J, Miller JW, Husain D. Plasma Metabolomic Profiles Associated with Three-Year Progression of Age-Related Macular Degeneration. Metabolites 2022;12(1)Abstract
Plasma metabolomic profiles have been shown to be associated with age-related macular degeneration (AMD) and its severity stages. However, all studies performed to date have been cross-sectional and have not assessed progression of AMD. This prospective, longitudinal, pilot study analyzes, for the first time, the association between plasma metabolomic profiles and progression of AMD over a 3-year period. At baseline and 3 years later, subjects with AMD (n = 108 eyes) and controls (n = 45 eyes) were imaged with color fundus photos for AMD staging and tested for retinal function with dark adaptation (DA). Fasting plasma samples were also collected for metabolomic profiling. AMD progression was considered present if AMD stage at 3 years was more advanced than at baseline (n = 26 eyes, 17%). Results showed that, of the metabolites measured at baseline, eight were associated with 3-year AMD progression (p < 0.01) and 19 (p < 0.01) with changes in DA. Additionally, changes in the levels (i.e., between 3 years and baseline) of 6 and 17 metabolites demonstrated significant associations (p < 0.01) with AMD progression and DA, respectively. In conclusion, plasma metabolomic profiles are associated with clinical and functional progression of AMD at 3 years. These findings contribute to our understanding of mechanisms of AMD progression and the identification of potential therapeutics for this blinding disease.
Gnanaguru G, Mackey A, Choi EY, Arta A, Rossato FA, Gero TW, Urquhart AJ, Scott DA, D'Amore PA, Ng YSE. Discovery of sterically-hindered phenol compounds with potent cytoprotective activities against ox-LDL-induced retinal pigment epithelial cell death as a potential pharmacotherapy. Free Radic Biol Med 2022;178:360-368.Abstract
Late-stage dry age-related macular degeneration (AMD) or geographic atrophy (GA) is an irreversible blinding condition characterized by degeneration of retinal pigment epithelium (RPE) and the associated photoreceptors. Clinical and genetic evidence supports a role for dysfunctional lipid processing and accumulation of harmful oxidized lipids in the pathogenesis of GA. Using an oxidized low-density lipoprotein (ox-LDL)-induced RPE death assay, we screened and identified sterically-hindered phenol compounds with potent protective activities for RPE. The phenol-containing PPARγ agonist, troglitazone, protected against ox-LDL-induced RPE cell death, whereas other more potent PPARγ agonists did not protect RPE cells. Knockdown of PPARγ did not affect the protective activity of troglitazone in RPE, confirming the protective function is not due to the thiazolidine (TZD) group of troglitazone. Prototypical hindered phenol trolox and its analogs potently protected against ox-LDL-induced RPE cell death whereas potent antioxidants without the phenol group failed to protect RPE. Hindered phenols preserved lysosomal integrity against ox-LDL-induced damage and FITC-labeled trolox was localized to the lysosomes in RPE cells. Analogs of trolox inhibited reactive oxygen species (ROS) formation induced by ox-LDL uptake in a dose-dependent fashion and were effective at sub-micromolar concentrations. Treatment with trolox analog 2,2,5,7,8-pentamethyl-6-chromanol (PMC) significantly induced the expression of the lysosomal protein NPC-1 and reduced intracellular cholesterol level upon ox-LDL uptake. Our data indicate that the lysosomal-localized hindered phenols are uniquely potent in protecting the RPE against the toxic effects of ox-LDL, and may represent a novel pharmacotherapy to preserve the vision in patients with GA.
Claessens D, Ichhpujani P, Singh RB. MacuFix® versus Amsler grid for metamorphopsia categorization for macular diseases. Int Ophthalmol 2022;42(1):229-238.Abstract
PURPOSE: Macular diseases often lead to metamorphopsia, which is traditionally tested using the Amsler grid. This study evaluates a novel method for assessing metamorphopsia, based on the software AMD-A Metamorphopsia Detector, application MacuFix®. METHODS: In this observational study, the usability of a new smartphone-based testing method to assess metamorphopsia was evaluated in 45 patients experiencing metamorphopsia in at least one eye using the questionnaire "System Usability Score (SUS)." Additionally, the diagnostic adherence of self-monitoring with the Amsler grid was compared to self-monitoring with the novel software MacuFix®. RESULTS: The average score of the SUS questionnaire in this study was 76.7 ± 15.5, corresponding to the "good" score on the grading scale. The average interval between two home administered tests was significantly shorter (6 days) when the application was used as compared to using the Amsler grid (19 days). The odds ratio of the frequency of patients using the application to the patients using the home test was 4. CONCLUSION: MacuFix® application can help in effective home monitoring of macular function as high user satisfaction and increased testing frequency was observed in its use in patients with macular diseases.
Ji MH, Callaway NF, Ludwig CA, Vail D, Al-Moujahed A, Rosenblatt TR, Leng T, Sanislo SR, Moshfeghi DM. Visual acuity and progression of macular atrophy in patients receiving intravitreal anti-VEGF for age-related macular degeneration. Eur J Ophthalmol 2022;32(1):429-435.Abstract
PURPOSE: Whether intravitreal anti-vascular endothelial growth factors (VEGFs) cause retinal atrophy is still a subject of debate. We reported 13 eyes that received several injections of anti-VEGF for wet age-related macular degeneration (AMD) with good visual acuity despite geographic atrophy on imaging. METHODS: This is a case series study conducted at Byers Eye Institute at Stanford University. Patients of three retina specialists with wet AMD who received six or more intravitreal injection of anti-VEGFs with visual acuity of 20/60 or better and incomplete RPE and outer retina atrophy (iRORA) or complete RPE and outer retinal atrophy (cRORA) were enrolled in this case series. Different imaging modalities were reviewed by three retina specialists comparing the baseline with the most recent exam. RESULTS: About 13 eyes of 10 patients met the selection criteria. Eleven eyes were classified as iRORA and 2 as cRORA. Despite the development of macular atrophy on imaging after an average of 38.1 injections, eyes maintained stable visual acuity. CONCLUSION: The discrepancy between structural and functional findings in this cohort suggests that patients treated by anti-VEGF drugs exhibit divergent clinical outcomes for currently unknown reasons. The authors propose anti-VEGF may affect melanosomes within RPE without disrupting RPE and photoreceptors function completely. This requires further investigation.
Wai KM, Vingopoulos F, Garg I, Kasetty M, Silverman RF, Katz R, Laíns I, Miller JW, Husain D, Vavvas DG, Kim LA, Miller JB. Contrast sensitivity function in patients with macular disease and good visual acuity. Br J Ophthalmol 2022;106(6):839-844.Abstract
INTRODUCTION: Contrast sensitivity function (CSF) may better estimate a patient's visual function compared with visual acuity (VA). Our study evaluates the quick CSF (qCSF) method to measure visual function in eyes with macular disease and good letter acuity. METHODS: Patients with maculopathies (retinal vein occlusion, macula-off retinal detachment, dry age-related macular degeneration and wet age-related macular degeneration) and good letter acuity (VA ≥20/30) were included. The qCSF method uses an intelligent algorithm to measure CSF across multiple spatial frequencies. All maculopathy eyes combined and individual macular disease groups were compared with healthy control eyes. Main outcomes included area under the log CSF (AULCSF) and six CS thresholds ranging from 1 cycle per degree (cpd) to 18 cpd. RESULTS: 151 eyes with maculopathy and 93 control eyes with VA ≥20/30 were included. The presence of a maculopathy was associated with significant reduction in AULCSF (β: -0.174; p<0.001) and CS thresholds at all spatial frequencies except for 18 cpd (β: -0.094 to -0.200 log CS, all p<0.01) compared with controls. Reductions in CS thresholds were most notable at low and intermediate spatial frequencies (1.5 cpd, 3 cpd and 6 cpd). CONCLUSION: CSF measured with the qCSF active learning method was found to be significantly reduced in eyes affected by macular disease despite good VA compared with healthy control eyes. The qCSF method is a promising clinical tool to quantify subtle visual deficits that may otherwise go unrecognised by current testing methods.
Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, Lam E, Luo HR, Sun Y. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine 2021;73:103632.Abstract
BACKGROUND: Pathological neovascularization in neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. Increasing evidence shows that cells of myeloid lineage play important roles in controlling pathological endothelium formation. Suppressor of cytokine signaling 3 (SOCS3) pathway has been linked to neovascularization. METHODS: We utilised a laser-induced choroidal neovascularization (CNV) mouse model to investigate the neovascular aspect of human AMD. In several cell lineage reporter mice, bone marrow chimeric mice and Socs3 loss-of-function (knockout) and gain-of-function (overexpression) mice, immunohistochemistry, confocal, and choroidal explant co-culture with bone marrow-derived macrophage medium were used to study the mechanisms underlying pathological CNV formation via myeloid SOCS3. FINDINGS: SOCS3 was significantly induced in myeloid lineage cells, which were recruited into the CNV lesion area. Myeloid Socs3 overexpression inhibited laser-induced CNV, reduced myeloid lineage-derived macrophage/microglia recruitment onsite, and attenuated pro-inflammatory factor expression. Moreover, SOCS3 in myeloid regulated vascular sprouting ex vivo in choroid explants and SOCS3 agonist reduced in vivo CNV. INTERPRETATION: These findings suggest that myeloid lineage cells contributed to pathological CNV formation regulated by SOCS3. FUNDING: This project was funded by NIH/NEI (R01EY030140, R01EY029238), BrightFocus Foundation, American Health Assistance Foundation (AHAF), and Boston Children's Hospital Ophthalmology Foundation for YS and the National Institutes of Health/National Heart, Lung and Blood Institute (U01HL098166) for PZ.
Ludwig CA, Vail D, Rajeshuni NA, Al-Moujahed A, Rosenblatt T, Callaway NF, Pasricha MV, Ji MH, Moshfeghi DM. Statins and the progression of age-related macular degeneration in the United States. PLoS One 2021;16(8):e0252878.Abstract
PURPOSE: To study the effect of statin exposure on the progression from non-exudative to exudative age-related macular degeneration (AMD). METHODS: Retrospective cohort study of commercially insured patients diagnosed with non-exudative AMD (n = 231,888) from 2007 to 2015. Time-to-event analysis of the association between exposure to lipid-lowering medications and time from non-exudative AMD to exudative AMD diagnosis was conducted. Outcome measures included progression to exudative AMD, indicated by diagnosis codes for exudative AMD or procedural codes for intravitreal injections. RESULTS: In the year before and after first AMD diagnosis, 11,330 patients were continuously prescribed lipid-lowering medications and 31,627 patients did not take any lipid-lowering medication. Of those taking statins, 21 (1.6%) patients were on very-high-dose lipophilic statins, 644 (47.6%) on high-dose lipophilic statins, and 689 (50.9%) on low-dose lipophilic statins. We found no statistically significant relationship between exposure to low (HR 0.89, 95% CI 0.83 to 1.38) or high-dose lipophilic statins (HR 1.12, 95% CI 0.86 to 1.45) and progression to exudative AMD. No patients taking very-high-dose lipophilic statins converted from non-exudative to exudative AMD, though this difference was not statistically significant due to the subgroup size (p = .23, log-rank test). CONCLUSIONS: No statistically significant relationship was found between statin exposure and risk of AMD progression. Interestingly, no patients taking very-high-dose lipophilic statins progressed to exudative AMD, a finding that warrants further exploration.
Saddala MS, Lennikov A, Mukwaya A, Yang X, Tang S, Huang H. Data mining and network analysis reveals C-X-C chemokine receptor type 5 is involved in the pathophysiology of age-related macular degeneration. J Biomol Struct Dyn 2021;:1-10.Abstract
Our previous studies found that the C-X-C motif chemokine receptor 5 (CXCR5) loss leads to retinal pigment epithelium (RPE) dysfunction and AMD pathogenesis. The current study aimed to characterize the G protein-coupled receptor (GPCR) structure of CXCR5 and analyze its interactions with AMD-related risk genes. The sequence alignments, homology model of CXCR5 and structural assessment analysis were performed. Data and text mining were then performed to identify AMD-related risk genes and their interaction with CXCR5 using statistical and mathematical algorithms. Sequence alignment and phylogenetic tree analysis revealed that human CXCR5 was highly similar (85.4839%) to the rabbit. The least similarity (33.871%) was found to be in zebrafish compared to the other species. The CXCR5 model structural assessment and secondary structure analysis exhibited an excellent model. Network analysis revealed that IL10, TNF, ICAM1, CXCL1, CXCL8, APP, TLR4, SELL, C3, IL17A and CCR2 were the most connected genes CXCR5. These findings suggest that CXCR5 signaling may regulate the biological function of RPE and modulate AMD pathophysiology via GPCR signaling and interacting with identified AMD risk genes. In summary, the data presented here provide novel and crucial insights into the molecular mechanisms of CXCR5 involvement in AMD.Communicated by Ramaswamy H. Sarma.
Hibert ML, Chen Y, Ohringer N, Feuer WJ, Waheed NK, Heier JS, Calhoun MW, Rosenfeld PJ, Polimeni JR. Altered Blood Flow in the Ophthalmic and Internal Carotid Arteries in Patients with Age-Related Macular Degeneration Measured Using Noncontrast MR Angiography at 7T. AJNR Am J Neuroradiol 2021;Abstract
BACKGROUND AND PURPOSE: Age-related macular degeneration is associated with reduced perfusion of the eye; however, the role of altered blood flow in the upstream ophthalmic or internal carotid arteries is unclear. We used ultra-high-field MR imaging to investigate whether the diameter of and blood flow in the ophthalmic artery and/or the ICA are altered in age-related macular degeneration and whether any blood flow changes are associated with disease progression. MATERIALS AND METHODS: Twenty-four patients with age-related macular degeneration and 13 similarly-aged healthy controls participated. TOF and high-resolution dynamic 2D phase-contrast MRA (0.26 × 0.26 × 2mm3, 100-ms effective sampling rate) was acquired at 7T. Vessel diameters were calculated from cross-sectional areas in phase-contrast acquisitions. Blood flow time-series were measured across the cardiac cycle. RESULTS: The ophthalmic artery vessel diameter was found to be significantly smaller in patients with age-related macular degeneration than in controls. Volumetric flow through the ophthalmic artery was significantly lower in patients with late age-related macular degeneration, with a significant trend of decreasing volumetric ophthalmic artery flow rates with increasing disease severity. The resistance index was significantly greater in patients with age-related macular degeneration than in controls in the ophthalmic artery. Flow velocity through the ophthalmic artery and ICA was significantly higher in patients with age-related macular degeneration. Ophthalmic artery blood flow as a percentage of ipsilateral ICA blood flow was nearly double in controls than in patients with age-related macular degeneration. CONCLUSIONS: These findings support the hypothesis that vascular changes upstream to the eye are associated with the severity of age-related macular degeneration. Additional investigation into the potential causality of this relationship and whether treatments that improve ocular circulation slow disease progression is warranted.
Pundlik S, Nigalye A, Laíns I, Mendez KM, Katz R, Kim J, Kim IK, Miller JB, Vavvas D, Miller JW, Luo G, Husain D. Area under the dark adaptation curve as a reliable alternate measure of dark adaptation response. Br J Ophthalmol 2021;Abstract
PURPOSE: Quantification of dark adaptation (DA) response using the conventional rod intercept time (RIT) requires very long testing time and may not be measurable in the presence of impairments due to diseases such as age-related macular degeneration (AMD). The goal of this study was to investigate the advantages of using area under the DA curve (AUDAC) as an alternative to the conventional parameters to quantify DA response. METHODS: Data on 136 eyes (AMD: 98, normal controls: 38) from an ongoing longitudinal study on AMD were used. DA was measured using the AdaptDx 20 min protocol. AUDAC was computed from the raw DA characteristic curve at different time points, including 6.5 min and 20 min (default). The presence of AMD in the given eye was predicted using a logistic regression model within the leave-one-out cross-validation framework, with DA response as the predictor while adjusting for age and gender. The DA response variable was either the AUDAC values computed at 6.5 min (AUDAC6.5) or at 20 min (AUDAC20) cut-off, or the conventional RIT. RESULTS: AUDAC6.5 was strongly correlated with AUDAC20 (β=86, p<0.001, R=0.87). The accuracy of predicting the presence of AMD using AUDAC20 was 76%, compared with 79% when using RIT, the current gold standard. In addition, when limiting AUDAC calculation to 6.5 min cut-off, the predictive accuracy of AUDAC6.5 was 80%. CONCLUSIONS: AUDAC can be a valuable measure to quantify the overall DA response and can potentially facilitate shorter testing duration while maintaining diagnostic accuracy.
Gnanaguru G, Wagschal A, Oh J, Saez-Torres KL, Li T, Temel RE, Kleinman ME, Näär AM, D'Amore PA. Targeting of miR-33 ameliorates phenotypes linked to age-related macular degeneration. Mol Ther 2021;29(7):2281-2293.Abstract
Abnormal cholesterol/lipid homeostasis is linked to neurodegenerative conditions such as age-related macular degeneration (AMD), which is a leading cause of blindness in the elderly. The most prevalent form, termed "dry" AMD, is characterized by pathological cholesterol accumulation beneath the retinal pigment epithelial (RPE) cell layer and inflammation-linked degeneration in the retina. We show here that the cholesterol-regulating microRNA miR-33 was elevated in the RPE of aging mice. Expression of the miR-33 target ATP-binding cassette transporter (ABCA1), a cholesterol efflux pump genetically linked to AMD, declined reciprocally in the RPE with age. In accord, miR-33 modulated ABCA1 expression and cholesterol efflux in human RPE cells. Subcutaneous delivery of miR-33 antisense oligonucleotides (ASO) to aging mice and non-human primates fed a Western-type high fat/cholesterol diet resulted in increased ABCA1 expression, decreased cholesterol accumulation, and reduced immune cell infiltration in the RPE cell layer, accompanied by decreased pathological changes to RPE morphology. These findings suggest that miR-33 targeting may decrease cholesterol deposition and ameliorate AMD initiation and progression.
Perepelkina T, Fulton AB. Artificial Intelligence (AI) Applications for Age-Related Macular Degeneration (AMD) and Other Retinal Dystrophies. Semin Ophthalmol 2021;36(4):304-309.Abstract
Artificial intelligence (AI), with its subdivisions (machine and deep learning), is a new branch of computer science that has shown impressive results across a variety of domains. The applications of AI to medicine and biology are being widely investigated. Medical specialties that rely heavily on images, including radiology, dermatology, oncology and ophthalmology, were the first to explore AI approaches in analysis and diagnosis. Applications of AI in ophthalmology have concentrated on diseases with high prevalence, such as diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration (AMD), and glaucoma. Here we provide an overview of AI applications for diagnosis, classification, and clinical management of AMD and other macular dystrophies.
Gong D, Kras A, Miller JB. Application of Deep Learning for Diagnosing, Classifying, and Treating Age-Related Macular Degeneration. Semin Ophthalmol 2021;36(4):198-204.Abstract
Age-related macular degeneration (AMD) affects nearly 200 million people and is the third leading cause of irreversible vision loss worldwide. Deep learning, a branch of artificial intelligence that can learn image recognition based on pre-existing datasets, creates an opportunity for more accurate and efficient diagnosis, classification, and treatment of AMD on both individual and population levels. Current algorithms based on fundus photography and optical coherence tomography imaging have already achieved diagnostic accuracy levels comparable to human graders. This accuracy can be further increased when deep learning algorithms are simultaneously applied to multiple diagnostic imaging modalities. Combined with advances in telemedicine and imaging technology, deep learning can enable large populations of patients to be screened than would otherwise be possible and allow ophthalmologists to focus on seeing those patients who are in need of treatment, thus reducing the number of patients with significant visual impairment from AMD.

Pages