Neuro-ophthalmology

Bergeron E, Bouffard MA. Evidence-based management of optic neuritis. Curr Opin Ophthalmol 2023;Abstract
PURPOSE OF REVIEW: Optic neuritis can result from several distinct causes, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody disease (MOGAD), when not idiopathic. This review discusses evidence-based treatment approaches contingent upon each specific cause of optic neuritis. RECENT FINDINGS: Current evidence highlights the need for prompt plasmapheresis as adjunct to intravenous methylprednisolone (IVMP) in patients with NMOSD-associated optic neuritis. Recent advances have included a proliferation of novel disease modifying therapies (DMTs) for long-term management of NMOSD and an understanding of how existing therapeutic options can be leveraged to optimally treat MOGAD. SUMMARY: In acute idiopathic or MS-associated optic neuritis, IVMP hastens visual recovery, though it does not substantially affect final visual outcomes. IVMP and adjunctive plasmapheresis are beneficial in the treatment of NMOSD-associated optic neuritis, with a shorter time-to-treatment associated with a higher likelihood of recovery. The natural history of untreated MOGAD-associated optic neuritis is unclear but treatment with IVMP is near-universal given phenotypic similarities with NMOSD. Long-term immunosuppressive therapy is warranted in patients with NMOSD as well as in patients with MOGAD with poor visual recovery or recurrent attacks.
Dissing-Olesen L, Walker AJ, Feng Q, Barr HJ, Walker AC, Xie L, Wilton DK, Das I, Benowitz LI, Stevens B. FEAST: A flow cytometry-based toolkit for interrogating microglial engulfment of synaptic and myelin proteins. Nat Commun 2023;14(1):6015.Abstract
Although engulfment is a hallmark of microglia function, fully validated platforms that facilitate high-throughput quantification of this process are lacking. Here, we present FEAST (Flow cytometric Engulfment Assay for Specific Target proteins), which enables interrogation of in vivo engulfment of synaptic material by brain resident macrophages at single-cell resolution. We optimize FEAST for two different analyses: quantification of fluorescent material inside live cells and of engulfed endogenous proteins within fixed cells. To overcome false-positive engulfment signals, we introduce an approach suitable for interrogating engulfment in microglia from perfusion-fixed tissue. As a proof-of-concept for the specificity and versatility of FEAST, we examine the engulfment of synaptic proteins after optic nerve crush and of myelin in two mouse models of demyelination (treatment with cuprizone and injections of lysolecithin). We find that microglia, but not brain-border associated macrophages, engulf in these contexts. Our work underscores how FEAST can be utilized to gain critical insight into functional neuro-immune interactions that shape development, homeostasis, and disease.
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang X-W, Wohlschlegel J, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023;18(1):64.Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023;72:84-101.Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Rizzo JF, Sanders DT, Castelbuono AC. Orbital Vasculopathy With Unexpected Finding of Calcium Oxalosis in the Context of a Clinical Diagnosis of Optic Neuropathy. J Neuroophthalmol 2023;Abstract
BACKGROUND: There are few reports of histopathology of any form of optic neuropathy. This article provides histopathologic findings of an adult-onset, nonprogressive optic neuropathy that was diagnosed clinically as nonacute, nonarteritic anterior ischemic optic neuropathy (NAION) but which was found by a pathological study to be associated with diffuse calcium oxalosis that was confined in the involved orbit. METHODS: This is a case report that includes results of a neuro-ophthalmologic examination and histopathology of a complete autopsy, including en bloc removal of both orbits and the brain. The unaffected orbit/optic nerve served as a control. The affected orbit was serially sectioned into 2,550 increments each separated by 10 μm; the uninvolved orbit was sectioned into 150 equally spaced sections. The main outcome measures were derived from the autopsy, especially from the thin-section histopathologic study of both orbits that focused on blood vessels and the site of neural damage within the optic nerve. RESULTS: The neuro-ophthalmologic examination revealed a unilateral optic neuropathy with pallor of the left optic nerve head that had been documented just before death. The general autopsy showed acute bacterial endocarditis and a recent cerebral hematoma that caused death. Histopathology revealed sectoral loss of optic nerve axons in the left eye. Numerous arterial walls in the left orbit, including short posterior ciliary arteries and the central retinal artery, contained hundreds of crystals with anisotropic, colorful birefringence consistent with calcium oxalosis. Crystals were not found in the right, control orbit or elsewhere in the body. CONCLUSIONS: The patient developed an optic neuropathy late in life that was diagnosed by an experienced neuro-ophthalmologist as being most consistent with nonacute, nonarteritic anterior ischemic optic neuropathy. The autopsy identified sectoral loss of optic nerve fibers consistent with that diagnosis. However, the unexpected discovery of calcium oxalate crystals in blood vessels of the involved orbit, which curiously were not present elsewhere in the body, raises a question of their etiological role in this particular optic neuropathy. Whether the crystals were causal, epiphenomenal, or purely incidental to the optic neuropathy cannot be answered by our study.
Tofade TO, Chwalisz BK. Neuro-ophthalmic complications of varicella-zoster virus. Curr Opin Ophthalmol 2023;34(6):470-475.Abstract
PURPOSE OF REVIEW: This review broadly describes recent neuro-ophthalmic manifestations of varicella-zoster virus (VZV) reported in literature. RECENT FINDINGS: Despite varicella vaccination, the incidence of herpes zoster continues to rise, potentially leading to devastating consequences when ocular complications occur.A small but growing literature documents cases of retinal disease because of varicella reactivation after SARS-CoV-2 vaccination, ischemic optic neuropathy occurring during herpes zoster ophthalmicus, VZV-induced orbital apex syndrome, and immune-mediated ocular complications in patients with prior neuro-ophthalmic manifestations of VZV. SUMMARY: It is important for clinicians to keep abreast of the diverse neuro-ophthalmic manifestations of VZV as early diagnosis and treatment often lead to better visual outcomes.
Xie L, Yin Y, Jayakar S, Kawaguchi R, Wang Q, Peterson S, Shi C, Turnes BL, Zhang Z, Oses-Prieto J, Li J, Burlingame A, Woolf CJ, Geschwind D, Rasband M, Benowitz LI. The oncomodulin receptor ArmC10 enables axon regeneration in mice after nerve injury and neurite outgrowth in human iPSC-derived sensory neurons. Sci Transl Med 2023;15(708):eadg6241.Abstract
Oncomodulin (Ocm) is a myeloid cell-derived growth factor that enables axon regeneration in mice and rats after optic nerve injury or peripheral nerve injury, yet the mechanisms underlying its activity are unknown. Using proximity biotinylation, coimmunoprecipitation, surface plasmon resonance, and ectopic expression, we have identified armadillo-repeat protein C10 (ArmC10) as a high-affinity receptor for Ocm. ArmC10 deletion suppressed inflammation-induced axon regeneration in the injured optic nerves of mice. ArmC10 deletion also suppressed the ability of lesioned sensory neurons to regenerate peripheral axons rapidly after a second injury and to regenerate their central axons after spinal cord injury in mice (the conditioning lesion effect). Conversely, Ocm acted through ArmC10 to accelerate optic nerve and peripheral nerve regeneration and to enable spinal cord axon regeneration in these mouse nerve injury models. We showed that ArmC10 is highly expressed in human-induced pluripotent stem cell-derived sensory neurons and that exposure to Ocm altered gene expression and enhanced neurite outgrowth. ArmC10 was also expressed in human monocytes, and Ocm increased the expression of immune modulatory genes in these cells. These findings suggest that Ocm acting through its receptor ArmC10 may be a useful therapeutic target for nerve repair and immune modulation.
Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci 2023;17:1226181.Abstract
Neuronal migration and axon growth and guidance require precise control of microtubule dynamics and microtubule-based cargo transport. TUBB3 encodes the neuronal-specific β-tubulin isotype III, TUBB3, a component of neuronal microtubules expressed throughout the life of central and peripheral neurons. Human pathogenic TUBB3 missense variants result in altered TUBB3 function and cause errors either in the growth and guidance of cranial and, to a lesser extent, central axons, or in cortical neuronal migration and organization, and rarely in both. Moreover, human pathogenic missense variants in KIF21A, which encodes an anterograde kinesin motor protein that interacts directly with microtubules, alter KIF21A function and cause errors in cranial axon growth and guidance that can phenocopy TUBB3 variants. Here, we review reported TUBB3 and KIF21A variants, resulting phenotypes, and corresponding functional studies of both wildtype and mutant proteins. We summarize the evidence that, in vitro and in mouse models, loss-of-function and missense variants can alter microtubule dynamics and microtubule-kinesin interactions. Lastly, we highlight additional studies that might contribute to our understanding of the relationship between specific tubulin isotypes and specific kinesin motor proteins in health and disease.
Oke I, Ness SD, Peeler CE. Gaze-Evoked Vision Changes. J Binocul Vis Ocul Motil 2023;73(3):75-76.Abstract
We describe an atypical presentation of aberrant regeneration of the 3rd cranial nerve causing vision changes with ocular motility. Abnormal communication between axons destined for the medial rectus and those destined for muscles involved in the accommodative response resulted in simultaneous pupil constriction and myopic shift of approximately 2.5 diopters with adduction. While there have been several reports of this pupillary response (Czarnecki sign), no cases have documented the change in refraction from ciliary muscle involvement.
Adhikari Y, Ma C-G, Chai Z, Jin X. Preventing development of post-stroke hyperexcitability by optogenetic or pharmacological stimulation of cortical excitatory activity. Neurobiol Dis 2023;184:106233.Abstract
Stroke is the most common cause of acquired epilepsy, but treatment for preventing the development of post-stroke epilepsy is still unavailable. Since stroke results in neuronal damage and death as well as initial loss of activity in the affected brain region, homeostatic plasticity may be trigged and contribute to an increase in network hyperexcitability that underlies epileptogenesis. Correspondingly, enhancing brain activity may inhibit hyperexcitability from enhanced homeostatic plasticity and prevent post-stroke epileptogenesis. To test these hypotheses, we first used in vivo two-photon and mesoscopic imaging of activity of cortical pyramidal neurons in Thy1-GCaMP6 transgenic mice to determine longitudinal changes in excitatory activity after a photothrombotic ischemic stroke. At 3-days post-stroke, there was a significant loss of neuronal activity in the peri-injury area as indicated by reductions in the frequency of calcium spikes and percentage of active neurons, which recovered to baseline level at day 7, supporting a homeostatic activity regulation of the surviving neurons in the peri-injury area. We further used optogenetic stimulation to specifically stimulate activity of pyramidal neurons in the peri-injury area of Thy-1 channelrhodopsin transgenic mice from day 5 to day 15 after stroke. Using pentylenetetrazole test to evaluate seizure susceptibility, we showed that stroke mice are more susceptible to Racine stage V seizures (time latency 54.3 ± 12.9 min) compared to sham mice (107.1 ± 13.6 min), but optogenetic stimulation reversed the increase in seizure susceptibility (114.0 ± 9.2 min) in mice with stroke. Similarly, administration of D-cycloserine, a partial N-methyl-d-aspartate (NMDA) receptor agonist that can mildly enhance neuronal activity without causing post-stroke seizure, from day 5 to day 15 after a stroke significantly reversed the increase in seizure susceptibility. The treatment also resulted in an increased survival of glutamic acid decarboxylase 67 (GAD67) positive interneurons and a reduced activation of glial fibrillary acidic protein (GFAP) positive reactive astrocytes. Thus, this study supports the involvement of homeostatic activity regulation in the development of post-stroke hyperexcitability and potential application of activity enhancement as a novel strategy to prevent post-stroke late-onset seizure and epilepsy through regulating cortical homeostatic plasticity.
Eslami M, Tabarestani S, Adjouadi M. A unique color-coded visualization system with multimodal information fusion and deep learning in a longitudinal study of Alzheimer's disease. Artif Intell Med 2023;140:102543.Abstract
PURPOSE: Automated diagnosis and prognosis of Alzheimer's Disease remain a challenging problem that machine learning (ML) techniques have attempted to resolve in the last decade. This study introduces a first-of-its-kind color-coded visualization mechanism driven by an integrated ML model to predict disease trajectory in a 2-year longitudinal study. The main aim of this study is to help capture visually in 2D and 3D renderings the diagnosis and prognosis of AD, therefore augmenting our understanding of the processes of multiclass classification and regression analysis. METHOD: The proposed method, Machine Learning for Visualizing AD (ML4VisAD), is designed to predict disease progression through a visual output. This newly developed model takes baseline measurements as input to generate a color-coded visual image that reflects disease progression at different time points. The architecture of the network relies on convolutional neural networks. With 1123 subjects selected from the ADNI QT-PAD dataset, we use a 10-fold cross-validation process to evaluate the method. Multimodal inputs* include neuroimaging data (MRI, PET), neuropsychological test scores (excluding MMSE, CDR-SB, and ADAS to avoid bias), cerebrospinal fluid (CSF) biomarkers with measures of amyloid beta (ABETA), phosphorylated tau protein (PTAU), total tau protein (TAU), and risk factors that include age, gender, years of education, and ApoE4 gene. FINDINGS/RESULTS: Based on subjective scores reached by three raters, the results showed an accuracy of 0.82 ± 0.03 for a 3-way classification and 0.68 ± 0.05 for a 5-way classification. The visual renderings were generated in 0.08 msec for a 23 × 23 output image and in 0.17 ms for a 45 × 45 output image. Through visualization, this study (1) demonstrates that the ML visual output augments the prospects for a more accurate diagnosis and (2) highlights why multiclass classification and regression analysis are incredibly challenging. An online survey was conducted to gauge this visualization platform's merits and obtain valuable feedback from users. All implementation codes are shared online on GitHub. CONCLUSION: This approach makes it possible to visualize the many nuances that lead to a specific classification or prediction in the disease trajectory, all in context to multimodal measurements taken at baseline. This ML model can serve as a multiclass classification and prediction model while reinforcing the diagnosis and prognosis capabilities by including a visualization platform.
Wu C, Gaier ED, Nihalani BR, Whitecross S, Hensch TK, Hunter DG. Durable recovery from amblyopia with donepezil. Sci Rep 2023;13(1):10161.Abstract
An elevated threshold for neuroplasticity limits visual gains with treatment of residual amblyopia in older children and adults. Acetylcholinesterase inhibitors (AChEI) can enable visual neuroplasticity and promote recovery from amblyopia in adult mice. Motivated by these promising findings, we sought to determine whether donepezil, a commercially available AChEI, can enable recovery in older children and adults with residual amblyopia. In this open-label pilot efficacy study, 16 participants (mean age 16 years; range 9-37 years) with residual anisometropic and/or strabismic amblyopia were treated with daily oral donepezil for 12 weeks. Donepezil dosage was started at 2.5 or 5.0 mg based on age and increased by 2.5 mg if the amblyopic eye visual acuity did not improve by 1 line from the visit 4 weeks prior for a maximum dosage of 7.5 or 10 mg. Participants < 18 years of age further patched the dominant eye. The primary outcome was visual acuity in the amblyopic eye at 22 weeks, 10 weeks after treatment was discontinued. Mean amblyopic eye visual acuity improved 1.2 lines (range 0.0-3.0), and 4/16 (25%) improved by ≥ 2 lines after 12 weeks of treatment. Gains were maintained 10 weeks after cessation of donepezil and were similar for children and adults. Adverse events were mild and self-limited. Residual amblyopia improves in older children and adults treated with donepezil, supporting the concept that the critical window of visual cortical plasticity can be pharmacologically manipulated to treat amblyopia. Placebo-controlled studies are needed.

Pages