Diabetic Eye Disease

A
AbdelAl O, Ashraf M, Sampani K, Sun JK. "For Mass Eye and Ear Special Issue" Adaptive Optics in the Evaluation of Diabetic Retinopathy. Semin Ophthalmol 2019;:1-9.Abstract
Retinal imaging is a fundamental tool for clinical and research efforts in the evaluation and management of diabetic retinopathy. Adaptive optics (AO) is an imaging technique that enables correction of over 90% of the optical aberrations of an individual eye induced primarily by the tear film, cornea and lens. The two major tasks of any AO system are to measure the optical imperfections of the eye and to then compensate for these aberrations to generate a corrected wavefront of reflected light from the eye. AO scanning laser ophthalmoscopy (AOSLO) provides a theoretical lateral resolution limit of 1.4 μm, allowing the study of microscopic features of the retinal vascular and neural tissue. AOSLO studies have revealed irregularities of the photoreceptor mosaic, vascular loss, and details of vascular lesions in diabetic eyes that may provide new insight into development, regression, and response to therapy of diabetic eye disease.
Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, Kiss S, Silva PS, Wykoff CC, Sun JK, Sun JK. Comparison of Early Treatment Diabetic Retinopathy Study Standard 7-Field Imaging With Ultrawide-Field Imaging for Determining Severity of Diabetic Retinopathy. JAMA Ophthalmol 2018;Abstract
Importance: Moderate to substantial agreement between Early Treatment Diabetic Retinopathy Study (ETDRS) 7-field imaging and ultrawide-field (UWF) imaging has been suggested in single-center studies. Comparing images obtained by multiple centers could increase confidence that UWF images can be used reliably in place of ETDRS imaging in future clinical trials. Objective: To compare diabetic retinopathy (DR) severity from modified ETDRS 7-field imaging and UWF imaging. Design, Setting, and Participants: This preplanned, cross-sectional analysis included modified ETDRS 7-field images obtained using the Diabetic Retinopathy Clinical Research Network acquisition protocol and UWF images obtained captured with the Optos 200Tx system (Optos, PLC) from adult participants (≥18 years old) with type 1 or type 2 diabetes. Both image types were evaluated by trained graders masked to clinical data. Data collection occurred from February 2015 to December 2015, and data analysis from June 2016 to December 2017. Main Outcomes and Measures: Agreement between UWF images, UWF imagesmasked to include only the ETDRS 7-field area, and ETDRS 7-field images were calculated using κ statistics. Results: A total of 764 eyes from 385 participants were included; participants had a median (IQR) age of 62.2 (53.6-69.2) years, 194 (50.4%) were women, and 256 (66.5%) were white. Of 742 eyes with both ETDRS 7-field images and UWF masked images graded, 359 (48.4% [95% CI, 44.4%-52.4%]) eyes had exact agreement, and 653 eyes (88.0% [95% CI, 85.2%-90.3%]) agreed within 1 step (weighted κ, 0.51 [95% CI, 0.44-0.58]). After open adjudication by an independent senior grader of all images with more than a 2-step discrepancy, perfect agreement was found in 435 eyes (59.0% [95% CI, 55.1%-62.8%]) and agreement within 1 step in 714 eyes (96.9% [95% CI, 95.1%-98.0%]; κ, 0.77 [95% CI, 0.73-0.82]). Ability of the imaging modalities to detect retinopathy severity in an individual eye was considered similar in 59 eyes (50.9% [95% CI, 41.3%-60.4%]), better for ETDRS 7-field imaging in 22 eyes (19.0% [95% CI, 12.5%-27.7%]), and better for UWF-masked images in 31 eyes (26.7% [95% CI 18.8%-36.5%]). Comparing UWF masked and unmasked images, 94 of 751 eyes (12.5%) had DR graded as at least 1 step more severe on UWF unmasked images vs UWF masked images. Predominantly peripheral DR lesions were present in 308 of 751 eyes (41.0%); this suggested increased DR severity by 2 or more steps in 34 eyes (11.0%). Conclusions and Relevance: Imaging by the ETDRS 7-field and UWF imaging systems have moderate to substantial agreement when determining the severity of DR within the 7 standard fields. Disparities in an individual eye are equivalently distributed between imaging modalities and can be better or worse on 1 or the other. Longitudinal follow-up will evaluate the primary outcome of this study to determine if peripheral retinal findings are associated with future retinopathy outcomes.
Aiello LP, Ayala AR, Antoszyk AN, Arnold-Bush B, Baker C, Bressler NM, Elman MJ, Glassman AR, Jampol LM, Melia M, Nielsen J, Wolpert HA, Wolpert HA. Assessing the Effect of Personalized Diabetes Risk Assessments During Ophthalmologic Visits on Glycemic Control: A Randomized Clinical Trial. JAMA Ophthalmol 2015;133(8):888-96.Abstract

IMPORTANCE: Optimization of glycemic control is critical to reduce the number of diabetes mellitus-related complications, but long-term success is challenging. Although vision loss is among the greatest fears of individuals with diabetes, comprehensive personalized diabetes education and risk assessments are not consistently used in ophthalmologic settings. OBJECTIVE: To determine whether the point-of-care measurement of hemoglobin A1c (HbA1c) and personalized diabetes risk assessments performed during retinal ophthalmologic visits improve glycemic control as assessed by HbA1c level. DESIGN, SETTING, AND PARTICIPANTS: Ophthalmologist office-based randomized, multicenter clinical trial in which investigators from 42 sites were randomly assigned to provide either a study-prescribed augmented diabetes assessment and education or the usual care. Adults with type 1 or 2 diabetes enrolled into 2 cohorts: those with a more-frequent-than-annual follow-up (502 control participants and 488 intervention participants) and those with an annual follow-up (368 control participants and 388 intervention participants). Enrollment was from April 2011 through January 2013. INTERVENTIONS: Point-of-care measurements of HbA1c, blood pressure, and retinopathy severity; an individualized estimate of the risk of retinopathy progression derived from the findings from ophthalmologic visits; structured comparison and review of past and current clinical findings; and structured education with immediate assessment and feedback regarding participant's understanding. These interventions were performed at enrollment and at routine ophthalmic follow-up visits scheduled at least 12 weeks apart. MAIN OUTCOMES AND MEASURES: Mean change in HbA1c level from baseline to 1-year follow-up. Secondary outcomes included body mass index, blood pressure, and responses to diabetes self-management practices and attitudes surveys. RESULTS: In the cohort with more-frequent-than-annual follow-ups, the mean (SD) change in HbA1c level at 1 year was -0.1% (1.5%) in the control group and -0.3% (1.4%) in the intervention group (adjusted mean difference, -0.09% [95% CI, -0.29% to 0.12%]; P = .35). In the cohort with annual follow-ups, the mean (SD) change in HbA1c level was 0.0% (1.1%) in the control group and -0.1% (1.6%) in the intervention group (mean difference, -0.05% [95% CI, -0.27% to 0.18%]; P = .63). Results were similar for all secondary outcomes. CONCLUSIONS AND RELEVANCE: Long-term optimization of glycemic control is not achieved by a majority of individuals with diabetes. The addition of personalized education and risk assessment during retinal ophthalmologic visits did not result in a reduction in HbA1c level compared with usual care over 1 year. These data suggest that optimizing glycemic control remains a substantive challenge requiring interventional paradigms other than those examined in our study. TRIAL REGISTRATION: clinicaltrials.gov Identifier:NCT01323348.

Aiello LP, Jacoba CMP, Ashraf M, Cavallerano JD, Tolson AM, Tolls D, Sun JK, Silva PS. Integrating Macular Optical Coherence Tomography with Ultrawide Field Imaging in a Diabetic Retinopathy Telemedicine Program Using a Single Device. Retina 2023;Abstract
PURPOSE: To determine the effect of combined macular optical coherence tomography (SD-OCT) and ultrawide field retinal imaging (UWFI) within a telemedicine program. METHODS: Comparative cohort study of consecutive patients with both UWFI and SD-OCT. UWFI and SD-OOCT were independently evaluated for diabetic macular edema (DME) and non-diabetic macular pathology. Sensitivity and specificity were calculated with SD-OCT as gold standard. RESULTS: 422 eyes from 211 diabetic patients were evaluated. DME severity by UWFI: no DME 93.4%, non-center involved DME (nonciDME) 5.1%, ciDME 0.7%, ungradable DME 0.7%. SD-OCT was ungradable in 0.5%. Macular pathology was identified in 34 (8.1%) eyes by UWFI and in 44 (10.4%) eyes by SD-OCT. DME represented only 38.6% of referable macular pathology identified by SD-OCT imaging. Sensitivity/specificity of UWFI compared to SD-OCT was 59%/96% for DME and 33%/99% for ciDME. Sensitivity/specificity of UWFI compared to SDOCT was 3%/98% for ERM. CONCLUSIONS: Addition of SD-OCT increased the identification of macular pathology by 29.4%. Over 58.3% of the eyes thought to have any DME on UWF imaging alone were false positives by SD-OCT. The integration of SD-OCT with UWFI markedly increased detection and reduced false positive assessments of DME and macular pathology in a teleophthalmology program.
Aiello LP, Cavallerano J, Sun J, Salti N, Nasrallah M, Mehanna CJ, El Salloukh NA, Salti HI. Long-Term Effect on HbA1c in Poorly Controlled Diabetic Patients Following Nonmydriatic Retinal Image Review at the Time of Endocrinology Visit. Telemed J E Health 2020;26(10):1265-1270.Abstract
p p p
Aiello LP, Jacoba CMP, Ashraf M, Cavallerano JD, Tolson AM, Tolls D, Sun JK, Silva PS. INTEGRATING MACULAR OPTICAL COHERENCE TOMOGRAPHY WITH ULTRAWIDE-FIELD IMAGING IN A DIABETIC RETINOPATHY TELEMEDICINE PROGRAM USING A SINGLE DEVICE. Retina 2023;43(11):1928-1935.Abstract
PURPOSE: To determine the effect of combined macular spectral-domain optical coherence tomography (SD-OCT) and ultrawide field retinal imaging (UWFI) within a telemedicine program. METHODS: Comparative cohort study of consecutive patients with both UWFI and SD-OCT. Ultrawide field retinal imaging and SD-OOCT were independently evaluated for diabetic macular edema (DME) and nondiabetic macular abnormality. Sensitivity and specificity were calculated with SD-OCT as the gold standard. RESULTS: Four hundred twenty-two eyes from 211 diabetic patients were evaluated. Diabetic macular edema severity by UWFI was as follows: no DME 93.4%, noncenter involved DME (nonciDME) 5.1%, ciDME 0.7%, ungradable DME 0.7%. SD-OCT was ungradable in 0.5%. Macular abnormality was identified in 34 (8.1%) eyes by UWFI and in 44 (10.4%) eyes by SD-OCT. Diabetic macular edema represented only 38.6% of referable macular abnormality identified by SD-OCT imaging. Sensitivity/specificity of UWFI compared with SD-OCT was 59%/96% for DME and 33%/99% for ciDME. Sensitivity/specificity of UWFI compared with SDOCT was 3%/98% for epiretinal membrane. CONCLUSION: Addition of SD-OCT increased the identification of macular abnormality by 29.4%. More than 58.3% of the eyes believed to have any DME on UWF imaging alone were false-positives by SD-OCT. The integration of SD-OCT with UWFI markedly increased detection and reduced false-positive assessments of DME and macular abnormality in a teleophthalmology program.
Al-Latayfeh M, Silva PS, Sun JK, Aiello LP. Antiangiogenic therapy for ischemic retinopathies. Cold Spring Harb Perspect Med 2012;2(6):a006411.Abstract
Neovascularization is a common pathological process in various retinal vascular disorders including diabetic retinopathy (DR), age-related macular degeneration (AMD) and retinal vein occlusion (RVO). The development of neovascular vessels may lead to complications such as vitreous hemorrhage, fibrovascular tissue formation, and traction retinal detachments. Ultimately, irreversible vision loss may result. Various proangiogenic factors are involved in these complex processes. Different antiangiogenic drugs have been formulated in an attempt treat these vascular disorders. One factor that plays a major role in the development of retinal neovascularization is vascular endothelial growth factor (VEGF). Anti-VEGF agents are currently FDA approved for the treatment of AMD and RVO. They are also extensively used as an off-label treatment for diabetic macular edema (DME), proliferative DR, and neovascular glaucoma. However, at this time, the long-term safety of chronic VEGF inhibition has not been extensively evaluated. A large and rapidly expanding body of research on angiogenesis is being conducted at multiple centers across the globe to determine the exact contributions and interactions among a variety of angiogenic factors in an effort to determine the therapeutic potential of antiangiogenic agent in the treatment of a variety of retinal diseases.
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021;17(4):195-206.Abstract
Diabetes mellitus has profound effects on multiple organ systems; however, the loss of vision caused by diabetic retinopathy might be one of the most impactful in a patient's life. The retina is a highly metabolically active tissue that requires a complex interaction of cells, spanning light sensing photoreceptors to neurons that transfer the electrochemical signal to the brain with support by glia and vascular tissue. Neuronal function depends on a complex inter-dependency of retinal cells that includes the formation of a blood-retinal barrier. This dynamic system is negatively affected by diabetes mellitus, which alters normal cell-cell interactions and leads to profound vascular abnormalities, loss of the blood-retinal barrier and impaired neuronal function. Understanding the normal cell signalling interactions and how they are altered by diabetes mellitus has already led to novel therapies that have improved visual outcomes in many patients. Research highlighted in this Review has led to a new understanding of retinal pathophysiology during diabetes mellitus and has uncovered potential new therapeutic avenues to treat this debilitating disease.
Antoszyk AN, Glassman AR, Beaulieu WT, Jampol LM, Jhaveri CD, Punjabi OS, Salehi-Had H, Wells JA, Maguire MG, Stockdale CR, Martin DF, Sun JK, Sun JK. Effect of Intravitreous Aflibercept vs Vitrectomy With Panretinal Photocoagulation on Visual Acuity in Patients With Vitreous Hemorrhage From Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA 2020;324(23):2383-2395.Abstract
Importance: Vitreous hemorrhage from proliferative diabetic retinopathy can cause loss of vision. The best management approach is unknown. Objective: To compare initial treatment with intravitreous aflibercept vs vitrectomy with panretinal photocoagulation for vitreous hemorrhage from proliferative diabetic retinopathy. Design, Setting, and Participants: Randomized clinical trial at 39 DRCR Retina Network sites in the US and Canada including 205 adults with vison loss due to vitreous hemorrhage from proliferative diabetic retinopathy who were enrolled from November 2016 to December 2017. The final follow-up visit was completed in January 2020. Interventions: Random assignment of eyes (1 per participant) to aflibercept (100 participants) or vitrectomy with panretinal photocoagulation (105 participants). Participants whose eyes were assigned to aflibercept initially received 4 monthly injections. Both groups could receive aflibercept or vitrectomy during follow-up based on protocol criteria. Main Outcomes and Measures: The primary outcome was mean visual acuity letter score (range, 0-100; higher scores indicate better vision) over 24 weeks (area under the curve); the study was powered to detect a difference of 8 letters. Secondary outcomes included mean visual acuity at 4 weeks and 2 years. Results: Among 205 participants (205 eyes) who were randomized (mean [SD] age, 57 [11] years; 115 [56%] men; mean visual acuity letter score, 34.5 [Snellen equivalent, 20/200]), 95% (195 of 205) completed the 24-week visit and 90% (177 of 196, excluding 9 deaths) completed the 2-year visit. The mean visual acuity letter score over 24 weeks was 59.3 (Snellen equivalent, 20/63) (95% CI, 54.9 to 63.7) in the aflibercept group vs 63.0 (Snellen equivalent, 20/63) (95% CI, 58.6 to 67.3) in the vitrectomy group (adjusted difference, -5.0 [95% CI, -10.2 to 0.3], P = .06). Among 23 secondary outcomes, 15 showed no significant difference. The mean visual acuity letter score was 52.6 (Snellen equivalent, 20/100) in the aflibercept group vs 62.3 (Snellen equivalent, 20/63) in the vitrectomy group at 4 weeks (adjusted difference, -11.2 [95% CI, -18.5 to -3.9], P = .003) and 73.7 (Snellen equivalent, 20/40) vs 71.0 (Snellen equivalent, 20/40) at 2 years (adjusted difference, 2.7 [95% CI, -3.1 to 8.4], P = .36). Over 2 years, 33 eyes (33%) assigned to aflibercept received vitrectomy and 34 eyes (32%) assigned to vitrectomy received subsequent aflibercept. Conclusions and Relevance: Among participants whose eyes had vitreous hemorrhage from proliferative diabetic retinopathy, there was no statistically significant difference in the primary outcome of mean visual acuity letter score over 24 weeks following initial treatment with intravitreous aflibercept vs vitrectomy with panretinal photocoagulation. However, the study may have been underpowered, considering the range of the 95% CI, to detect a clinically important benefit in favor of initial vitrectomy with panretinal photocoagulation. Trial Registration: ClinicalTrials.gov Identifier: NCT02858076.
Arboleda-Velasquez JF, Valdez CN, Marko CK, D'Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr Diab Rep 2015;15(2):573.Abstract

Pericytes, the mural cells that constitute the capillaries along with endothelial cells, have been associated with the pathobiology of diabetic retinopathy; however, therapeutic implications of this association remain largely unexplored. Pericytes appear to be highly susceptible to the metabolic challenges associated with a diabetic environment, and there is substantial evidence that their loss may contribute to microvascular instability leading to the formation of microaneurysms, microhemorrhages, acellular capillaries, and capillary nonperfusion. Since pericytes are strategically located at the interface between the vascular and neural components of the retina, they offer extraordinary opportunities for therapeutic interventions in diabetic retinopathy. Moreover, the availability of novel imaging methodologies now allows for the in vivo visualization of pericytes, enabling a new generation of clinical trials that use pericyte tracking as clinical endpoints. The recognition of multiple signaling mechanisms involved in pericyte development and survival should allow for a renewed interest in pericytes as a therapeutic target for diabetic retinopathy.

Arboleda-Velasquez JF, Primo V, Graham M, James A, Manent J, D'Amore PA. Notch signaling functions in retinal pericyte survival. Invest Ophthalmol Vis Sci 2014;55(8):5191-9.Abstract
PURPOSE: Pericytes, the vascular cells that constitute the outer layer of capillaries, have been shown to have a crucial role in vascular development and stability. Loss of pericytes precedes endothelial cell dysfunction and vascular degeneration in small-vessel diseases, including diabetic retinopathy. Despite their clinical relevance, the cellular pathways controlling survival of retinal pericytes remain largely uncharacterized. Therefore, we investigated the role of Notch signaling, a master regulator of cell fate decisions, in retinal pericyte survival. METHODS: A coculture system of ligand-dependent Notch signaling was developed using primary cultured retinal pericytes and a mesenchymal cell line derived from an inducible mouse model expressing the Delta-like 1 Notch ligand. This model was used to examine the effect of Notch activity on pericyte survival using quantitative PCR (qPCR) and a light-induced cell death assay. The effect of Notch gain- and loss-of-function was analyzed in monocultures of retinal pericytes using antibody arrays to interrogate the expression of apoptosis-related proteins. RESULTS: Primary cultured retinal pericytes differentially expressed key molecules of the Notch pathway and displayed strong expression of canonical Notch/RBPJK (recombination signal-binding protein 1 for J-kappa) downstream targets. A gene expression screen using gain- and loss-of-function approaches identified genes relevant to cell survival as downstream targets of Notch activity in retinal pericytes. Ligand-mediated Notch activity protected retinal pericytes from light-induced cell death. CONCLUSIONS: Our results have identified signature genes downstream of Notch activity in retinal pericytes and suggest that tight regulation of Notch signaling is crucial for pericyte survival.
Ashraf M, AbdelAl O, Shokrollahi S, Pitoc CM, Aiello LP, Silva PS. Evaluation of diabetic retinopathy severity on ultrawide field colour images compared with ultrawide fluorescein angiograms. Br J Ophthalmol 2023;107(4):534-539.Abstract
PURPOSE: To compare Early Treatment Diabetic Retinopathy Study (ETDRS) diabetic retinopathy (DR) severity on ultrawide field (UWF) colour imaging (CI) and UWF fluorescein angiography (FA). DESIGN: Cross-sectional retrospective review. SUBJECTS: Patients with diabetes mellitus and at least mild non-proliferative DR on UWF-CI. METHODS: UWF-CI and UWF-FA images acquired within 1 month of each other were evaluated independently using ETDRS DR Severity Scale (DRSS) for colour photography adapted for UWF-CI and UWF-FA. Extent of non-perfusion (NP, mm2) was determined from UWF-FA images. MAIN OUTCOME MEASURES: Agreement rate between DRSS on UWF-CI and UWF-FA. RESULTS: Images from 218 eyes of 137 patients with diabetes were evaluated. Agreement rate for DRSS between UWF-CI and UWF-FA was moderate to substantial (K=0.46, Kw=0.65). Over-all, DRSS was worse in 73 (33.5%) eyes on UWF-FA and in 16 (7.3%) on UWF-CI. Compared to UWF-CI, UWF-FA identified more severe DRSS in 26.5% (1 step) and 7.34% (≥2 steps) of eyes. DRSS was worse than UWF-FA in 56 (51.4%) in early DR (ETDRS levels 20-47, N=109) and 17 (15.6%) in eyes with severe DR (53 and higher, N=109). In this cohort, the extent of NP significantly increased as eyes approach moderate non-proliferative DR (levels 43-47, p=0.0065). CONCLUSION: When evaluating UWF-FA images using the ETDRS colour severity scale, DRSS is graded as more severe in a substantial number of eyes than when evaluating UWF-CI. It is uncertain how the DRSS levels using UWF-FA translate to clinical outcomes, but the additional lesions detected might provide added prognostic value. These and other recent data emphasise the need of obtaining outcome data based on UWF-FA and the potential need to develop DRSS specifically tailored for UWF-FA images.
Ashraf M, Rageh A, Gilbert M, Tolls D, Fleming A, Souka A, El-Baha S, Cavallerano JD, Sun JK, Aiello LP, Silva PS. Factors Affecting Predominantly Peripheral Lesion Identification and Grading. Transl Vis Sci Technol 2021;10(7):6.Abstract
Purpose: The purpose of this study was to determine factors affecting predominantly peripheral lesion (PPL) grading, such as qualitative versus quantitative assessment, device type, and severity of diabetic retinopathy (DR) in ultrawide field color images (UWF-CIs). Methods: Patients with DR had UWF-CI qualitatively graded for PPL using standardized techniques and had hemorrhages/microaneurysms (H/Mas) individually annotated for quantitative PPL grading on two different ultrawide field devices. Results: Among 791 eyes of 481 patients, 38.2% had mild nonproliferative DR (NPDR), 34.7% had moderate NPDR, and 27.1% had severe NPDR to proliferative DR (PDR). The overall agreement between qualitative and quantitative PPL grading was moderate (ĸ = 0.423, P < 0.001). Agreement rates were fair in eyes with mild NPDR (ĸ = 0.336, P < 0.001) but moderate in eyes with moderate NPDR (ĸ = 0.525, P < 0.001) and severe NPDR-PDR (ĸ = 0.409, P < 0.001). Increasing thresholds for quantitative PPL determination improved agreement rates, with peak agreements at H/Ma count differences of six for mild NPDR, five for moderate NPDR, and nine for severe NPDR-PDR. Based on ultrawide field device type (California = 412 eyes vs. 200Tx = 379 eyes), agreement between qualitative and quantitative PPL grading was moderate for all DR severities in both devices (ĸ = 0.369-0.526, P < 0.001) except for mild NPDR on the 200Tx, which had poor agreement (ĸ = 0.055, P = 0.478). Conclusions: Determination of PPL varies between standard qualitative and quantitative grading and is dependent on NPDR severity, device type, and magnitude of lesion differences used for quantitative assessment. Translational Relevance: Prior UWF studies have not accounted for imaging and grading factors that affect PPL, such factors need to be reviewed when assessing thresholds for DR progression rates.
Ashraf M, Sampani K, AbdelAl O, Fleming A, Cavallerano J, Souka A, El Baha SM, Silva PS, Sun J, Aiello LP. Disparity of microaneurysm count between ultrawide field colour imaging and ultrawide field fluorescein angiography in eyes with diabetic retinopathy. Br J Ophthalmol 2020;104(12):1762-1767.Abstract
AIMS: To compare microaneurysm (MA) counts using ultrawide field colour images (UWF-CI) and ultrawide field fluorescein angiography (UWF-FA). METHODS: Retrospective study including patients with type 1 or 2 diabetes mellitus receiving UWF-FA and UWF-CI within 2 weeks. MAs were manually counted in individual Early Treatment Diabetic Retinopathy Study (ETDRS) and extended UWF zones. Fields with MAs ≥20 determined diabetic retinopathy (DR) severity (0 fields=mild, 1-3=moderate, ≥4=severe). UWF-FA and UWF-CI agreement was determined and UWF-CI DR severity sensitivity analysis adjusting for UWF-FA MA counts performed. RESULTS: In 193 patients (288 eyes), 2.4% had no DR, 29.9% mild non-proliferative DR (NPDR), 32.6% moderate (NPDR), 22.9% severe NPDR and 12.2% proliferative DR. UWF-FA MA counts were 3.5-fold higher (p<0.001) than UWF-CI counts overall, 3.2x-fold higher in ETDRS fields (p<0.001) and 5.3-fold higher in extended ETDRS fields (p<0.001) and higher in type 1 versus type 2 diabetes (p<0.001). In eyes with NPDR on UWF-CI (n=246), UWF-FA images had 1.6x-3.5x more fields with ≥20 MAs (p<0.001). Fair agreement existed between imaging modalities (k=0.221-0.416). In ETDRS fields, DR severity agreement increased from k=0.346 to 0.600 when dividing UWF-FA counts by a factor of 3, followed by rapid decline in agreement thereafter. Total UWF area agreement increased from k=0.317 to 0.565 with an adjustment factor of either 4 or 5. CONCLUSIONS: UWF-FA detects threefold to fivefold more MAs than UWF-CI and identifies 1.6-3.5-fold more fields affecting DR severity. Differences exist at all DR severity levels, thus limiting direct comparison between the modalities. However, correcting UWF-FA MA counts substantially improves DR severity agreement between the modalities.
Ashraf M, Hock KM, Cavallerano JD, Wang FL, Silva PS. Comparison of Widefield Laser Ophthalmoscopy and ETDRS Retinal Area for Diabetic Retinopathy. Ophthalmol Sci 2022;2(4):100190.Abstract
PURPOSE: To evaluate agreement of nonmydriatic confocal scanning laser ophthalmoscopy (SLO; EIDON [CenterVue]) and the 7-standard field ETDRS area on ultrawide-field (UWF) SLO imaging for identification of diabetic retinopathy (DR) severity. DESIGN: Single-site, prospective, comparative, instrument validation study. PARTICIPANTS: One hundred ten eyes of 55 patients with diabetes mellitus were evaluated. METHODS: Each patient underwent nonmydriatic, nonsimultaneous stereoscopic imaging using the EIDON camera and 4 fields of 60° × 55° were acquired (macula centered, disc centered, temporal macula, superotemporal). Mydriatic UWF retinal images were acquired using a nonsimultaneous stereographic protocol with UWF imaging (California; Optos plc). Before grading, a standardized ETDRS 7-field image mask was applied to all UWF retinal images. Images from each device were graded independently by 2 masked graders using the ETDRS clinical DR classification. Any discrepancy in DR grading between the devices was adjudicated by a third grader. MAIN OUTCOME MEASURES: κ Levels of agreement, sensitivity, and specificity for DR thresholds. RESULTS: Severity by ETDRS grading was as follows: no DR, 10.9%; mild nonproliferative DR (NPDR), 45.5%; moderate NPDR, 16.5%; severe NPDR, 11.8%; proliferative DR, 12.7%; high-risk proliferative DR, 2.7%; and ungradable, 0%. After adjudication, the level of DR identified on EIDON images agreed exactly with that of UWF ETDRS imaging in 87% of eyes (n = 96) and was within 1 step in 99.1% of eyes (n = 109) with a simple κ value of 0.8244 ± 0.0439 (95% confidence interval [CI], 0.7385-0.9104) and weighted (linear) κ value of 0.9041 ± 0.0257 (95% CI, 0.8537-0.9545). Sensitivity and specificity compared with ETDRS field grading for any DR were 0.96 and 0.75, for moderate NPDR or worse were 0.96 and 0.97, and for severe NPDR or worse were 0.91 and 1.00, respectively. CONCLUSIONS: Nonmydriatic 4-field stereoscopic widefield imaging using the EIDON device was comparable with the DR severity identified within the ETDRS 7-standard field area of UWF images. Future studies will need to evaluate the applicability of this device as a clinical and research tool and the impact of different widefield coverage areas.
Ashraf M, Shokrollahi S, Salongcay RP, Aiello LP, Silva PS. Diabetic retinopathy and ultrawide field imaging. Semin Ophthalmol 2020;35(1):56-65.Abstract
The introduction of ultrawide field imaging has allowed the visualization of approximately 82% of the total retinal area compared to only 30% using 7-standard field Early Treatment Diabetic Retinopathy (ETDRS) photography. This substantially wider field of view, while useful in many retinal vascular diseases, is particularly important in diabetic retinopathy where eyes with predominantly peripheral lesions or PPL have been shown to have significantly greater progression rates compared to eyes without PPL. In telemedicine settings, ultrawide field imaging has substantially reduced image ungradable rates and increased rate of disease identification allowing care to be delivered more effectively. Furthermore, the use of ultrawide field fluorescein angiography allows the visualization of significantly more diabetic retinal lesions and allows more accurate quantification of total retinal nonperfusion, with potential implications in the management of diabetic retinopathy and diabetic macular edema. The focus of this paper is to review the current role of ultrawide field imaging in diabetic retinopathy and its possible future role in innovations for retinal image analysis such as artificial intelligence and vessel caliber measurements.
Ashraf M, Sampani K, Rageh A, Silva PS, Aiello LP, Sun JK. Interaction Between the Distribution of Diabetic Retinopathy Lesions and the Association of Optical Coherence Tomography Angiography Scans With Diabetic Retinopathy Severity. JAMA Ophthalmol 2020;138(12):1291-1297.Abstract
Importance: Studies have not yet determined whether the distribution of lesions in the retinal periphery alters the association between the severity of diabetic retinopathy (DR) and macular vessel density. Objective: To evaluate the association of DR lesion distribution with optical coherence tomography angiography (OCTA) metrics and DR severity. Design, Setting, and Participants: This cross-sectional observational study was conducted at a tertiary care center for diabetic eye disease among 225 patients with type 1 or 2 diabetes who had undergone imaging between February 15, 2016, and December 31, 2019. Exposures: Optical coherence tomography angiography 3 × 3-mm macular scans and ultra-widefield color imaging. Main Outcomes and Measures: Optical coherence tomography angiography vessel density in the superficial capillary plexus, intermediate capillary plexus, and deep capillary plexus and choriocapillaris flow density. The severity of DR and the predominantly peripheral lesions (PPL) were evaluated from ultra-widefield color imaging. Results: The study evaluated 352 eyes (225 patients; 125 men [55.6%]; mean [SD] age, 52.1 [15.1] years), of which 183 eyes (52.0%) had mild nonproliferative diabetic retinopathy (NPDR), 71 eyes (20.2%) had moderate NPDR, and 98 eyes (27.8%) had severe NPDR or proliferative diabetic retinopathy (PDR). In eyes with no PPL (209 [59.4%]), the mean (SD) vessel density in the superficial capillary plexus (mild NPDR, 38.1% [4.7%]; moderate NPDR, 36.4% [4.6%]; severe NPDR or PDR, 34.1% [4.1%]; P < .001) and the deep capillary plexus (mild NPDR, 45.8% [3.0%]; moderate NPDR, 45.8% [2.2%]; severe NPDR or PDR, 44.5% [1.9%]; P = .002), as well as the mean (SD) choriocapillaris flow density (mild NPDR, 69.7% [6.2%]; moderate NPDR, 67.6% [5.6%]; severe NPDR or PDR, 67.1% [5.6%]; P = .01), decreased with increasing DR severity. These associations remained statistically significant even after correcting for age, signal strength index, spherical equivalent, duration of diabetes, type of diabetes, and correlation between eyes of the same patient. In eyes with PPL (143 [40.6%]), mean (SD) vessel density in the superficial capillary plexus (mild NPDR, 34.1% [4.1%]; moderate NPDR, 35.2% [4.1%]; severe NPDR or PDR, 36.0% [4.3%]; P = .42) and the deep capillary plexus (mild NPDR, 44.5% [1.7%]; moderate NPDR, 45.4% [1.4%]; severe NPDR or PDR, 44.9% [1.5%]; P = .81), as well as the mean (SD) choriocapillaris flow density (mild NPDR, 67.1% [5.6%]; moderate NPDR, 69.3% [4.6%]; severe NPDR or PDR, 68.3% [5.6%]; P = .49), did not appear to change with increasing DR severity. Conclusions and Relevance: These results suggest that central retinal vessel density is associated with DR severity in eyes without, but not with, PPL. These findings suggest a potential need to stratify future optical coherence tomography angiography studies of eyes with DR by the presence or absence of PPL. If DR onset and worsening are associated with the location of retinal nonperfusion, assessment of global retinal nonperfusion using widefield angiography may improve the ability to evaluate DR severity and risk of DR worsening over time.
Ashraf M, Shokrollahi S, Pisig AU, Sampani K, AbdelAl O, Cavallerano JD, Robertson G, Fleming A, van Hemert J, Pitoc CM, Sun JK, Aiello LP, Silva PS. Retinal Vascular Caliber Association with Nonperfusion and Diabetic Retinopathy Severity Depends on Vascular Caliber Measurement Location. Ophthalmol Retina 2021;5(6):571-579.Abstract
PURPOSE: To evaluate the association of retinal nonperfusion and diabetic retinopathy (DR) severity with location of vascular caliber measurement using ultrawide field (UWF) imaging. DESIGN: Retrospective image review. PARTICIPANTS: Adults with diabetes mellitus. METHODS: All images from subjects with same-day UWF fluorescein angiography (FA) and color imaging were evaluated. Predominantly peripheral lesions (PPL) and DR severity were graded from UWF color images. Nonperfusion was quantified using UWF-FA in defined retinal regions [posterior pole (PP), mid-periphery (MP), far-periphery (FP)]. Retinal vessel calibers were measured at an optic disc centered inner and outer zone. MAIN OUTCOME MEASURES: Nonperfusion index (NPI) in the PP, MP and FP. Mean arteriole and venule diameter in the inner and outer zones. RESULTS: Two hundred eighty-five eyes of 193 patients (24.9% mild nonproliferative DR [NPDR], 22.8% moderate NPDR, 37.5% severe NPDR and 14.7% proliferative DR [PDR]) were reviewed. No significant associations between inner zone arteriolar diameter and retinal NPI overall or in any retinal region. In the outer zone, eyes with thinnest arteriolar calibers (quartile 1) were associated with a 1.7- to 2.4-fold nonperfusion increase across all retinal regions compared to the remaining eyes (P = 0.002 [PP] to 0.048 [FP]). In the outer zone, the percentage of eyes in the thinnest quartile of retinal arteriolar diameter increased with worsening DR severity (mild NPDR: 10% vs PDR: 31%, P = 0.007). This association was not observed when measured within the inner zone (P = 0.129). All venular caliber associations were not statistically significant when corrected for potentially confounding factors. Thinner outer zone retinal arteriolar caliber (quartile 1) was more common in eyes with PPL compared to eyes without PPL (34.1% vs 20.8%, P = 0.017) as were thicker outer venular calibers (quartile 4) (33% vs 21.3%, P = 0.036). Presence of PPL was associated with thinner outer zone arteriolar caliber (109.7 ± 26.5μm vs 123.0 ± 29.5μm, P = 0.001). CONCLUSIONS: The association of vascular caliber with nonperfusion and DR severity differs based upon the retinal location at which vascular caliber is measured. Peripheral arterial narrowing is associated with increasing nonperfusion, worsening DR severity and presence of PPL. In contrast, inner zone retinal arteriolar caliber is not associated with these findings.
Ashraf M, Sun JK, Silva PS, Aiello LP. Using Ultrawide Field-Directed Optical Coherence Tomography for Differentiating Nonproliferative and Proliferative Diabetic Retinopathy. Transl Vis Sci Technol 2023;12(2):7.Abstract
PURPOSE: To evaluate the ability of ultrawide field (UWF)-directed optical coherence tomography (OCT) to detect retinal neovascularization in eyes thought to have severe nonproliferative diabetic retinopathy (NPDR). METHODS: Retrospective study of 20 consecutive patients diagnosed with severe NPDR by clinical examination. All patients underwent UWF color imaging (UWF-CI) and UWF-directed OCT following a prespecified imaging protocol to assess the mid periphery, 15/32 (46.9%) eyes underwent UWF-fluorescein angiography (FA). On OCT, new vessels elsewhere (NVE) were defined when vessels breached the internal limiting membrane. RESULTS: A total of 32 eyes of 20 patients were evaluated. Of the 45 suspected areas of intraretinal microvascular abnormalities (IRMA) on UWF-CI, 38 (84.4%) were imaged by UWF-directed OCT, and 9/38 IRMA (23.7%) were NVE by OCT. Furthermore, UWF-directed OCT identified seven additional NVE in three eyes not seen on UWF-CI. This resulted in a change in diabetic retinopathy (DR) severity from severe NPDR to PDR in 8/32 eyes (25.0%). Among the 46.9% of eyes with UWF-FA, UWF-directed OCT agreed with the UWF-FA findings in 80% (12/15 eyes), missing only one peripheral NVE outside the UWF-OCT scanning area. Two eyes had subtle NVD that were not evident on UWF-directed OCT. CONCLUSIONS: This pilot study suggests that UWF-directed OCT may help differentiate IRMA from NVE and detect unrecognized NVE in eyes with advanced DR in a clinical practice setting. Future prospective studies in larger cohorts could determine whether this rapid and noninvasive method is clinically relevant in determining NVE presence or retinopathy progression and complication risk. TRANSLATIONAL RELEVANCE: UWF-directed OCT may offer a noninvasive alternative to detect NVE in eyes with DR.
Azad AD, Chen EM, Hinkle J, Rayess N, Wu D, Eliott D, Mruthyunjaya P, Parikh R. Trends in Anti-Vascular Endothelial Growth Factor Agents and Panretinal Photocoagulation Use in Diabetic Retinopathy. Ophthalmol Retina 2021;5(4):390-392.

Pages