Retinal Degenerations

A
Amamoto R, Wallick GK, Cepko CL. Retinoic acid signaling mediates peripheral cone photoreceptor survival in a mouse model of retina degeneration. Elife 2022;11Abstract
Retinitis Pigmentosa (RP) is a progressive, debilitating visual disorder caused by mutations in a diverse set of genes. In both humans with RP and mouse models of RP, rod photoreceptor dysfunction leads to loss of night vision, and is followed by secondary cone photoreceptor dysfunction and degeneration, leading to loss of daylight color vision. A strategy to prevent secondary cone death could provide a general RP therapy to preserve daylight color vision regardless of the underlying mutation. In mouse models of RP, cones in the peripheral retina survive long-term, despite complete rod loss. The mechanism for such peripheral cone survival had not been explored. Here, we found that active retinoic acid (RA) signaling in peripheral Muller glia is necessary for the abnormally long survival of these peripheral cones. RA depletion by conditional knockout of RA synthesis enzymes, or overexpression of an RA degradation enzyme, abrogated the extended survival of peripheral cones. Conversely, constitutive activation of RA signaling in the central retina promoted long-term cone survival. These results indicate that RA signaling mediates the prolonged peripheral cone survival in the rd1 mouse model of retinal degeneration, and provide a basis for a generic strategy for cone survival in the many diseases that lead to loss of cone-mediated vision.
Andzelm MM, Cherry TJ, Harmin DA, Boeke AC, Lee C, Hemberg M, Pawlyk B, Malik AN, Flavell SW, Sandberg MA, Raviola E, Greenberg ME. MEF2D Drives Photoreceptor Development through a Genome-wide Competition for Tissue-Specific Enhancers. Neuron 2015;86(1):247-63.Abstract

Organismal development requires the precise coordination of genetic programs to regulate cell fate and function. MEF2 transcription factors (TFs) play essential roles in this process but how these broadly expressed factors contribute to the generation of specific cell types during development is poorly understood. Here we show that despite being expressed in virtually all mammalian tissues, in the retina MEF2D binds to retina-specific enhancers and controls photoreceptor cell development. MEF2D achieves specificity by cooperating with a retina-specific factor CRX, which recruits MEF2D away from canonical MEF2 binding sites and redirects it to retina-specific enhancers that lack the consensus MEF2-binding sequence. Once bound to retina-specific enhancers, MEF2D and CRX co-activate the expression of photoreceptor-specific genes that are critical for retinal function. These findings demonstrate that broadly expressed TFs acquire specific functions through competitive recruitment to enhancers by tissue-specific TFs and through selective activation of these enhancers to regulate tissue-specific genes.

B
Ballios BG, Pierce EA, Huckfeldt RM. Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin Ophthalmol 2021;36(4):176-184.Abstract
Purpose: To review preclinical and clinical advances in gene therapy, with a focus on gene editing technologies, and application to inherited retinal disease.Methods: A narrative overview of the literature, summarizing the state-of-the-art in clinical gene therapy for inherited retinal disease, as well as the science and application of new gene editing technology.Results: The last three years has seen the first FDA approval of an in vivo gene replacement therapy for a hereditary blinding eye disease and, recently, the first clinical application of an in vivo gene editing technique. Limitations and challenges in this evolving field are highlighted, as well as new technologies developed to address the multitude of molecular mechanisms of disease.Conclusion: Genetic therapy for the treatment of inherited retinal disease is a rapidly expanding area of ophthalmology. New technologies have revolutionized the field of genome engineering and rekindled an interest in precision medicines for these conditions.
Benaglio P, San Jose PF, Avila-Fernandez A, Ascari G, Harper S, Manes G, Ayuso C, Hamel C, Berson EL, Rivolta C. Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa. Mol Vis 2014;20:843-51.Abstract

PURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.

Birsner AE, Benny O, D'Amato RJ. The corneal micropocket assay: a model of angiogenesis in the mouse eye. J Vis Exp 2014;(90)Abstract
The mouse corneal micropocket assay is a robust and quantitative in vivo assay for evaluating angiogenesis. By using standardized slow-release pellets containing specific growth factors that trigger blood vessel growth throughout the naturally avascular cornea, angiogenesis can be measured and quantified. In this assay the angiogenic response is generated over the course of several days, depending on the type and dose of growth factor used. The induction of neovascularization is commonly triggered by either basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). By combining these growth factors with sucralfate and hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate))) and casting the mixture into pellets, they can be surgically implanted in the mouse eye. These uniform pellets slowly-release the growth factors over five or six days (bFGF or VEGF respectively) enabling sufficient angiogenic response required for vessel area quantification using a slit lamp. This assay can be used for different applications, including the evaluation of angiogenic modulator drugs or treatments as well as comparison between different genetic backgrounds affecting angiogenesis. A skilled investigator after practicing this assay can implant a pellet in less than 5 min per eye.
Bronstein R, Capowski EE, Mehrotra S, Jansen AD, Navarro-Gomez D, Maher M, Place E, Sangermano R, Bujakowska KM, Gamm DM, Pierce EA. A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum Mol Genet 2020;29(6):967-979.Abstract
Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.
Brown EE, Scandura MJ, Mehrotra S, Wang Y, Du J, Pierce EA. Reduced nuclear NAD+ drives DNA damage and subsequent immune activation in the retina. Hum Mol Genet 2022;31(9):1370-1388.Abstract
Mutations in NMNAT1, a key enzyme involved in the synthesis of NAD+ in the nucleus, lead to an early onset severe inherited retinal degeneration (IRD). We aimed to understand the role of nuclear NAD+ in the retina and to identify the molecular mechanisms underlying NMNAT1-associated disease, using a mouse model that harbors the p.V9M mutation in Nmnat1 (Nmnat1V9M/V9M). We identified temporal transcriptional reprogramming in the retinas of Nmnat1V9M/V9M mice prior to retinal degeneration, which begins at 4 weeks of age, with no significant alterations in gene expression at 2 weeks of age and over 2600 differentially expressed genes by 3 weeks of age. Expression of the primary consumer of NAD+ in the nucleus, PARP1, an enzyme involved in DNA damage repair and transcriptional regulation, as well as 7 other PARP family enzymes, was elevated in the retinas of Nmnat1V9M/V9M. This was associated with elevated levels of DNA damage, PARP-mediated NAD+ consumption and migration of Iba1+/CD45+ microglia/macrophages to the subretinal space in the retinas of Nmnat1V9M/V9M mice. These findings suggest that photoreceptor cells are especially sensitive to perturbation of genome homeostasis, and that PARP-mediated cell death may play a role in other genetic forms of IRDs, and potentially other forms of neurodegeneration.
Brown EE, Scandura MJ, Pierce EA. Expression of NMNAT1 in the photoreceptors is sufficient to prevent NMNAT1-associated retinal degeneration. Mol Ther Methods Clin Dev 2023;29:319-328.Abstract
Nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) is a ubiquitously expressed enzyme involved in nuclear NAD+ production throughout the body. However, mutations in the NMNAT1 gene lead to retina-specific disease with few reports of systemic effects. We have previously demonstrated that AAV-mediated gene therapy using self-complementary AAV (scAAV) to ubiquitously express NMNAT1 throughout the retina prevents retinal degeneration in a mouse model of NMNAT1-associated disease. We aimed to develop a better understanding of the cell types in the retina that contribute to disease pathogenesis in NMNAT1-associated disease, and to identify the cell types that require NMNAT1 expression for therapeutic benefit. To achieve this goal, we treated Nmnat1V9M/V9M mice with scAAV using cell type-specific promoters to restrict NMNAT1 expression to distinct retinal cell types. We hypothesized that photoreceptors are uniquely vulnerable to NAD+ depletion due to mutations in NMNAT1. Consistent with this hypothesis, we identified that treatments that drove NMNAT1 expression in the photoreceptors led to preservation of retinal morphology. These findings suggest that gene therapies for NMNAT1-associated disease should aim to express NMNAT1 in the photoreceptor cells.
Bujakowska KM, Consugar M, Place E, Harper S, Lena J, Taub DG, White J, Navarro-Gomez D, Weigel DiFranco C, Farkas MH, Gai X, Berson EL, Pierce EA. Targeted exon sequencing in Usher syndrome type I. Invest Ophthalmol Vis Sci 2014;55(12):8488-96.Abstract

PURPOSE: Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. METHODS: The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. RESULTS: With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study.

Bujakowska KM, Fernandez-Godino R, Place E, Consugar M, Navarro-Gomez D, White J, Bedoukian EC, Zhu X, Xie HM, Gai X, Leroy BP, Pierce EA. Copy-number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genet Med 2017;19(6):643-651.Abstract
PURPOSE: Despite substantial progress in sequencing, current strategies can genetically solve only approximately 55-60% of inherited retinal degeneration (IRD) cases. This can be partially attributed to elusive mutations in the known IRD genes, which are not easily identified by the targeted next-generation sequencing (NGS) or Sanger sequencing approaches. We hypothesized that copy-number variations (CNVs) are a major contributor to the elusive genetic causality of IRDs. METHODS: Twenty-eight cases previously unsolved with a targeted NGS were investigated with whole-genome single-nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) arrays. RESULTS: Deletions in the IRD genes were detected in 5 of 28 families, including a de novo deletion. We suggest that the de novo deletion occurred through nonallelic homologous recombination (NAHR) and we constructed a genomic map of NAHR-prone regions with overlapping IRD genes. In this article, we also report an unusual case of recessive retinitis pigmentosa due to compound heterozygous mutations in SNRNP200, a gene that is typically associated with the dominant form of this disease. CONCLUSIONS: CNV mapping substantially increased the genetic diagnostic rate of IRDs, detecting genetic causality in 18% of previously unsolved cases. Extending the search to other structural variations will probably demonstrate an even higher contribution to genetic causality of IRDs.Genet Med advance online publication 13 October 2016.
Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot M-E, Antonio A, Lonjou C, Carpentier W, Mohand-Saïd S, den Hollander AI, Cremers FPM, Leroy BP, Gai X, Sahel J-A, van den Born IL, Collin RWJ, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet 2015;24(1):230-42.Abstract
Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.
C
Cai LZ, Lin J, Starr MR, Obeid A, Ryan EH, Ryan C, Forbes NJ, Arias D, Ammar MJ, Patel LG, Capone A, Emerson GG, Joseph DP, Eliott D, Gupta OP, Regillo CD, Hsu J, Yonekawa Y, Yonekawa Y. PRO score: predictive scoring system for visual outcomes after rhegmatogenous retinal detachment repair. Br J Ophthalmol 2023;107(4):555-559.Abstract
BACKGROUND/AIMS: To compare risk factors for poor visual outcomes in patients undergoing primary rhegmatogenous retinal detachment (RRD) repair and to develop a scoring system. METHODS: Analysis of the Primary Retinal detachment Outcomes (PRO) study, a multicentre interventional cohort of consecutive primary RRD surgeries performed in 2015. The main outcome measure was a poor visual outcome (Snellen VA ≤20/200). RESULTS: A total of 1178 cases were included. The mean preoperative and postoperative logMARs were 1.1±1.1 (20/250) and 0.5±0.7 (20/63), respectively. Multivariable logistic regression identified preoperative risk factors predictive of poor visual outcomes (≤20/200), including proliferative vitreoretinopathy (PVR) (OR 1.26; 95% CI 1.13 to 1.40), history of antivascular endothelial growth factor (VEGF) injections (1.38; 1.11 to 1.71), >1-week vision loss (1.17; 1.08 to 1.27), ocular comorbidities (1.18; 1.00 to 1.38), poor presenting VA (1.06 per initial logMAR unit; 1.02 to 1.10) and age >70 (1.13; 1.04 to 1.23). The data were split into training (75%) and validation (25%) and a scoring system was developed and validated. The risk for poor visual outcomes was 8% with a total score of 0, 17% with 1, 29% with 2, 47% with 3, and 71% with 4 or higher. CONCLUSIONS: Independent risk factors were compared for poor visual outcomes after RRD surgery, which included PVR, anti-VEGF injections, vision loss >1 week, ocular comorbidities, presenting VA and older age. The PRO score was developed to provide a scoring system that may be useful in clinical practice.
Cepko CL. Emerging gene therapies for retinal degenerations. J Neurosci 2012;32(19):6415-20.
Chan CY, Papakostas TD, Vavvas D. Evaluation of choroidal thickness among patients with oculocutaneous albinism. Br J Ophthalmol 2014;98(8):1135.
Chang K, Enayati S, Cho K-S, Utheim TP, Chen DF. Non-invasive electrical stimulation as a potential treatment for retinal degenerative diseases. Neural Regen Res 2021;16(8):1558-1559.
Chekuri A, Zientara-Rytter K, Soto-Hermida A, Borooah S, Voronchikhina M, Biswas P, Kumar V, Goodsell D, Hayward C, Shaw P, Stanton C, Garland D, Subramani S, Ayyagari R. Late-onset retinal degeneration pathology due to mutations in CTRP5 is mediated through HTRA1. Aging Cell 2019;18(6):e13011.Abstract
Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular degeneration characterized by the formation of sub-retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L-ORD results from mutations in the C1q-tumor necrosis factor-5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L-ORD pathology, we used a human cDNA library yeast two-hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM-Ch) from wild-type (Wt), heterozygous S163R Ctrp5 mutation knock-in (Ctrp5 ), and homozygous knock-in (Ctrp5 ) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C-terminal PDZ-binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R-CTRP5 protein also binds to HTRA1 but is resistant to HTRA1-mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM-Ch of Ctrp5 and Ctrp5 mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L-ORD pathology.
Chew EY, Clemons TE, Jaffe GJ, Johnson CA, Farsiu S, Lad EM, Guymer R, Rosenfeld P, Hubschman J-P, Constable I, Wiley H, Singerman LJ, Gillies M, Comer G, Blodi B, Eliott D, Yan J, Bird A, Friedlander M, Group MTT 2-PCNTFR2. Effect of Ciliary Neurotrophic Factor on Retinal Neurodegeneration in Patients with Macular Telangiectasia Type 2: A Randomized Clinical Trial. Ophthalmology 2019;126(4):540-549.Abstract
PURPOSE: To test the effects of an encapsulated cell-based delivery of a neuroprotective agent, ciliary neurotrophic factor (CNTF), on progression of macular telangiectasia type 2, a neurodegenerative disease with no proven effective therapy. DESIGN: Randomized sham-controlled clinical trial. PARTICIPANTS: Ninety-nine study eyes of 67 eligible participants were enrolled. METHODS: Single-masked randomized clinical trial of 24 months' duration conducted from May 2014 through April 2017 in 11 clinical centers of retinal specialists in the United States and Australia. Participants were randomized 1:1 to surgical implantation of intravitreal sustained delivery of human CNTF versus a sham procedure. MAIN OUTCOME MEASURES: The primary outcome was the difference in the area of neurodegeneration as measured in the area of the ellipsoid zone disruption (or photoreceptor loss) measured on spectral-domain (SD) OCT images at 24 months from baseline between the treated and untreated groups. Secondary outcomes included comparison of visual function changes between treatment groups. RESULTS: Among the 67 participants who were randomized (mean age, 62±8.9 years; 41 women [61%]; 58 white persons [86%]), 65 (97%) completed the study. Two participants (3 study eyes) died and 3 participants (4 eyes) were found ineligible. The eyes receiving sham treatment had 31% greater progression of neurodegeneration than the CNTF-treated eyes. The difference in mean area of photoreceptor loss was 0.05±0.03 mm (P = 0.04) at 24 months. Retinal sensitivity changes, measured using microperimetry, were correlated highly with the changes in the area of photoreceptor loss (r = 0.86; P < 0.0001). The mean retinal sensitivity loss of the sham group was 45% greater than that of the treated group (decrease, 15.81±8.93 dB; P = 0.07). Reading speed deteriorated in the sham group (-13.9 words per minute) with no loss in the treated group (P = 0.02). Serious adverse ocular effects were found in 2 of 51 persons (4%) in the sham group and 2 of 48 persons (4%) in the treated group. CONCLUSIONS: In participants with macular telangiectasia type 2, a surgical implant that released CNTF into the vitreous cavity, compared with a sham procedure, slowed the progression of retinal degeneration. Further research is needed to assess longer-term clinical outcomes and safety.
Chorfi S, Place EM, Huckfeldt RM. Disparities in Inherited Retinal Degenerations. Semin Ophthalmol 2023;38(2):201-206.Abstract
To review disparities in the field of inherited retinal degenerations to establish foundations for future discussions oriented toward finding possible solutions. A narrative overview of the literature. Despite collective efforts towards democratization of genetic testing and investigation, genetic databases containing primarily European populations are heavily relied upon. Access to specialized care and other resources is also still not available to all. Recognizing and addressing disparities and inequities within the field of inherited retinal degenerations will improve our care of these patients and our knowledge of their conditions.
Cremers FPM, Boon CJF, Bujakowska K, Zeitz C. Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype-Phenotype Correlations, and Inheritance Models. Genes (Basel) 2018;9(4)Abstract
Inherited retinal diseases (IRDs) are genetically and clinically heterogeneous disorders.[...].
D
Duan Y, Ma G, Huang X, D'Amore PA, Zhang F, Lei H. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells. J Biol Chem 2016;291(31):16339-47.Abstract

The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR.

Pages