Ballios BG, Pierce EA, Huckfeldt RM.
Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin Ophthalmol 2021;36(4):176-184.
AbstractPurpose: To review preclinical and clinical advances in gene therapy, with a focus on gene editing technologies, and application to inherited retinal disease.Methods: A narrative overview of the literature, summarizing the state-of-the-art in clinical gene therapy for inherited retinal disease, as well as the science and application of new gene editing technology.Results: The last three years has seen the first FDA approval of an in vivo gene replacement therapy for a hereditary blinding eye disease and, recently, the first clinical application of an in vivo gene editing technique. Limitations and challenges in this evolving field are highlighted, as well as new technologies developed to address the multitude of molecular mechanisms of disease.Conclusion: Genetic therapy for the treatment of inherited retinal disease is a rapidly expanding area of ophthalmology. New technologies have revolutionized the field of genome engineering and rekindled an interest in precision medicines for these conditions.
Benaglio P, San Jose PF, Avila-Fernandez A, Ascari G, Harper S, Manes G, Ayuso C, Hamel C, Berson EL, Rivolta C.
Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa. Mol Vis 2014;20:843-51.
AbstractPURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.
Birsner AE, Benny O, D'Amato RJ.
The corneal micropocket assay: a model of angiogenesis in the mouse eye. J Vis Exp 2014;(90)
AbstractThe mouse corneal micropocket assay is a robust and quantitative in vivo assay for evaluating angiogenesis. By using standardized slow-release pellets containing specific growth factors that trigger blood vessel growth throughout the naturally avascular cornea, angiogenesis can be measured and quantified. In this assay the angiogenic response is generated over the course of several days, depending on the type and dose of growth factor used. The induction of neovascularization is commonly triggered by either basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). By combining these growth factors with sucralfate and hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate))) and casting the mixture into pellets, they can be surgically implanted in the mouse eye. These uniform pellets slowly-release the growth factors over five or six days (bFGF or VEGF respectively) enabling sufficient angiogenic response required for vessel area quantification using a slit lamp. This assay can be used for different applications, including the evaluation of angiogenic modulator drugs or treatments as well as comparison between different genetic backgrounds affecting angiogenesis. A skilled investigator after practicing this assay can implant a pellet in less than 5 min per eye.
Bronstein R, Capowski EE, Mehrotra S, Jansen AD, Navarro-Gomez D, Maher M, Place E, Sangermano R, Bujakowska KM, Gamm DM, Pierce EA.
A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum Mol Genet 2020;29(6):967-979.
AbstractInherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.
Brown EE, Scandura MJ, Mehrotra S, Wang Y, Du J, Pierce EA.
Reduced nuclear NAD+ drives DNA damage and subsequent immune activation in the retina. Hum Mol Genet 2022;31(9):1370-1388.
AbstractMutations in NMNAT1, a key enzyme involved in the synthesis of NAD+ in the nucleus, lead to an early onset severe inherited retinal degeneration (IRD). We aimed to understand the role of nuclear NAD+ in the retina and to identify the molecular mechanisms underlying NMNAT1-associated disease, using a mouse model that harbors the p.V9M mutation in Nmnat1 (Nmnat1V9M/V9M). We identified temporal transcriptional reprogramming in the retinas of Nmnat1V9M/V9M mice prior to retinal degeneration, which begins at 4 weeks of age, with no significant alterations in gene expression at 2 weeks of age and over 2600 differentially expressed genes by 3 weeks of age. Expression of the primary consumer of NAD+ in the nucleus, PARP1, an enzyme involved in DNA damage repair and transcriptional regulation, as well as 7 other PARP family enzymes, was elevated in the retinas of Nmnat1V9M/V9M. This was associated with elevated levels of DNA damage, PARP-mediated NAD+ consumption and migration of Iba1+/CD45+ microglia/macrophages to the subretinal space in the retinas of Nmnat1V9M/V9M mice. These findings suggest that photoreceptor cells are especially sensitive to perturbation of genome homeostasis, and that PARP-mediated cell death may play a role in other genetic forms of IRDs, and potentially other forms of neurodegeneration.
Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot M-E, Antonio A, Lonjou C, Carpentier W, Mohand-Saïd S, den Hollander AI, Cremers FPM, Leroy BP, Gai X, Sahel J-A, van den Born IL, Collin RWJ, Zeitz C, Audo I, Pierce EA.
Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet 2015;24(1):230-42.
AbstractPrimary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.
Bujakowska KM, Consugar M, Place E, Harper S, Lena J, Taub DG, White J, Navarro-Gomez D, Weigel DiFranco C, Farkas MH, Gai X, Berson EL, Pierce EA.
Targeted exon sequencing in Usher syndrome type I. Invest Ophthalmol Vis Sci 2014;55(12):8488-96.
AbstractPURPOSE: Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. METHODS: The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. RESULTS: With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study.
Bujakowska KM, Fernandez-Godino R, Place E, Consugar M, Navarro-Gomez D, White J, Bedoukian EC, Zhu X, Xie HM, Gai X, Leroy BP, Pierce EA.
Copy-number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genet Med 2017;19(6):643-651.
AbstractPURPOSE: Despite substantial progress in sequencing, current strategies can genetically solve only approximately 55-60% of inherited retinal degeneration (IRD) cases. This can be partially attributed to elusive mutations in the known IRD genes, which are not easily identified by the targeted next-generation sequencing (NGS) or Sanger sequencing approaches. We hypothesized that copy-number variations (CNVs) are a major contributor to the elusive genetic causality of IRDs. METHODS: Twenty-eight cases previously unsolved with a targeted NGS were investigated with whole-genome single-nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) arrays. RESULTS: Deletions in the IRD genes were detected in 5 of 28 families, including a de novo deletion. We suggest that the de novo deletion occurred through nonallelic homologous recombination (NAHR) and we constructed a genomic map of NAHR-prone regions with overlapping IRD genes. In this article, we also report an unusual case of recessive retinitis pigmentosa due to compound heterozygous mutations in SNRNP200, a gene that is typically associated with the dominant form of this disease. CONCLUSIONS: CNV mapping substantially increased the genetic diagnostic rate of IRDs, detecting genetic causality in 18% of previously unsolved cases. Extending the search to other structural variations will probably demonstrate an even higher contribution to genetic causality of IRDs.Genet Med advance online publication 13 October 2016.