Mobility Enhancement & Vision Rehabilitation

Bowers AR, Tant M, Peli E. A pilot evaluation of on-road detection performance by drivers with hemianopia using oblique peripheral prisms. Stroke Res Treat 2012;2012:176806.Abstract
Aims. Homonymous hemianopia (HH), a severe visual consequence of stroke, causes difficulties in detecting obstacles on the nonseeing (blind) side. We conducted a pilot study to evaluate the effects of oblique peripheral prisms, a novel development in optical treatments for HH, on detection of unexpected hazards when driving. Methods. Twelve people with complete HH (median 49 years, range 29-68) completed road tests with sham oblique prism glasses (SP) and real oblique prism glasses (RP). A masked evaluator rated driving performance along the 25 km routes on busy streets in Ghent, Belgium. Results. The proportion of satisfactory responses to unexpected hazards on the blind side was higher in the RP than the SP drive (80% versus 30%; P = 0.001), but similar for unexpected hazards on the seeing side. Conclusions. These pilot data suggest that oblique peripheral prisms may improve responses of people with HH to blindside hazards when driving and provide the basis for a future, larger-sample clinical trial. Testing responses to unexpected hazards in areas of heavy vehicle and pedestrian traffic appears promising as a real-world outcome measure for future evaluations of HH rehabilitation interventions aimed at improving detection when driving.
Luo G, Satgunam PN, Peli E. Visual search performance of patients with vision impairment: effect of JPEG image enhancement. Ophthalmic Physiol Opt 2012;32(5):421-8.Abstract
PURPOSE: To measure natural image search performance in patients with central vision impairment. To evaluate the performance effect for a JPEG based image enhancement technique using the visual search task. METHODS: One hundred and fifty JPEG images were presented on a touch screen monitor in either an enhanced or original version to 19 patients (visual acuity 0.4-1.2 logMAR, 6/15 to 6/90, 20/50 to 20/300) and seven normally sighted controls (visual acuity -0.12 to 0.1 logMAR, 6/4.5 to 6/7.5, 20/15 to 20/25). Each image fell into one of three categories: faces, indoors, and collections. The enhancement was realized by moderately boosting a mid-range spatial frequency band in the discrete cosine transform (DCT) coefficients of the image luminance component. Participants pointed to an object in a picture that matched a given target displayed at the upper-left corner of the monitor. Search performance was quantified by the percentage of correct responses, the median search time of correct responses, and an 'integrated performance' measure - the area under the curve of cumulative correct response rate over search time. RESULTS: Patients were able to perform the search tasks but their performance was substantially worse than the controls. Search performances for the three image categories were significantly different (p <= 0.001) for all the participants, with searching for faces being the most difficult. When search time and correct response were analyzed separately, the effect of enhancement led to increase in one measure but decrease in another for many patients. Using the integrated performance, it was found that search performance declined with decrease in acuity (p = 0.005). An improvement with enhancement was found mainly for the patients whose acuity ranged from 0.4 to 0.8 logMAR (6/15 to 6/38, 20/50 to 20/125). Enhancement conferred a small but significant improvement in integrated performance for indoor and collection images (p = 0.025) in the patients. CONCLUSION: Search performance for natural images can be measured in patients with impaired vision to evaluate the effect of image enhancement. Patients with moderate vision loss might benefit from the moderate level of enhancement used here.
Merabet LB, Connors EC, Halko MA, Sánchez J. Teaching the blind to find their way by playing video games. PLoS One 2012;7(9):e44958.Abstract
Computer based video games are receiving great interest as a means to learn and acquire new skills. As a novel approach to teaching navigation skills in the blind, we have developed Audio-based Environment Simulator (AbES); a virtual reality environment set within the context of a video game metaphor. Despite the fact that participants were naïve to the overall purpose of the software, we found that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building using audio based cues alone. This was confirmed by a series of behavioral performance tests designed to assess the transfer of acquired spatial information to a large-scale, real-world indoor navigation task. Furthermore, learning the spatial layout through a goal directed gaming strategy allowed for the mental manipulation of spatial information as evidenced by enhanced navigation performance when compared to an explicit route learning strategy. We conclude that the immersive and highly interactive nature of the software greatly engages the blind user to actively explore the virtual environment. This in turn generates an accurate sense of a large-scale three-dimensional space and facilitates the learning and transfer of navigation skills to the physical world.

Pages