Mobility Enhancement & Vision Rehabilitation
Acuity is the most commonly used measure of visual function, and reductions in acuity are associated with most eye diseases. Metamorphopsia-a perceived distortion of visual space-is another common symptom of visual impairment and is currently assessed qualitatively using Amsler (1953) charts. In order to quantify the impact of metamorphopsia on acuity, we measured the effect of physical spatial distortion on letter recognition. Following earlier work showing that letter recognition is tuned to specific spatial frequency (SF) channels, we hypothesized that the effect of distortion might depend on the spatial scale of visual distortion just as it depends on the spatial scale of masking noise. Six normally sighted observers completed a 26 alternate forced choice (AFC) Sloan letter identification task at five different viewing distances, and the letters underwent different levels of spatial distortion. Distortion was controlled using spatially band-pass filtered noise that spatially remapped pixel locations. Noise was varied over five spatial frequencies and five magnitudes. Performance was modeled with logistic regression and worsened linearly with increasing distortion magnitude and decreasing letter size. We found that retinal SF affects distortion at midrange frequencies and can be explained with the tuning of a basic contrast sensitivity function, while object-centered distortion SF follows a similar pattern of letter object recognition sensitivity and is tuned to approximately three cycles per letter (CPL). The interaction between letter size and distortion makes acuity an unreliable outcome for metamorphopsia assessment.
BACKGROUND: Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. METHODS: The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. RESULTS: A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P < 0.001). Multivariable analysis demonstrated that RNFL thickness measurements were more sensitive at detecting optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. CONCLUSIONS: Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema.