Artifact Correction in Retinal Nerve Fiber Layer Thickness Maps Using Deep Learning and Its Clinical Utility in Glaucoma

Citation:

Shi M, Sun JA, Lokhande A, Tian Y, Luo Y, Elze T, Shen LQ, Wang M. Artifact Correction in Retinal Nerve Fiber Layer Thickness Maps Using Deep Learning and Its Clinical Utility in Glaucoma. Transl Vis Sci Technol 2023;12(11):12.

Date Published:

2023 Nov 01

Abstract:

PURPOSE: Correcting retinal nerve fiber layer thickness (RNFLT) artifacts in glaucoma with deep learning and evaluate its clinical usefulness. METHODS: We included 24,257 patients with optical coherence tomography and reliable visual field (VF) measurements within 30 days and 3,233 patients with reliable VF series of at least five measurements over ≥4 years. The artifacts are defined as RNFLT less than the known floor value of 50 µm. We selected 27,319 high-quality RNFLT maps with an artifact ratio (AR) of <2% as the ground truth. We created pseudo-artifacts from 21,722 low-quality RNFLT maps with AR of >5% and superimposed them on high-quality RNFLT maps to predict the artifact-free ground truth. We evaluated the impact of artifact correction on the structure-function relationship and progression forecasting. RESULTS: The mean absolute error and Pearson correlation of the artifact correction were 9.89 µm and 0.90 (P < 0.001), respectively. Artifact correction improved R2 for VF prediction in RNFLT maps with AR of >10% and AR of >20% up to 0.03 and 0.04 (P < 0.001), respectively. Artifact correction improved (P < 0.05) the AUC for progression prediction in RNFLT maps with AR of ≤10%, >10%, and >20%: (1) total deviation pointwise progression: 0.68 to 0.69, 0.62 to 0.63, and 0.62 to 0.64; and (2) mean deviation fast progression: 0.67 to 0.68, 0.54 to 0.60, and 0.45 to 0.56. CONCLUSIONS: Artifact correction for RNFLTs improves VF and progression prediction in glaucoma. TRANSLATIONAL RELEVANCE: Our model improves clinical usability of RNFLT maps with artifacts.

Last updated on 12/03/2023