Epidermal Growth Factor Stimulates Transforming Growth Factor-Beta Receptor Type II Expression In Corneal Epithelial Cells

Date Published:

2019 May 30


We previously demonstrated that inhibition of epidermal growth factor receptor (EGFR) slowed corneal epithelial migration. Here we examine the effect of EGF on transforming growth factor-beta receptor II (TGF-βRII) in a corneal wound-healing model and primary human corneal epithelial cells (pHCE). Corneal debridement wounds were made and allowed to heal ± Tyrphostin AG1478 (EGFR inhibitor), and assayed for EGFR activation and EGFR and TGF-βRII localization. Primary HCE were treated with EGF ± U0126 (MEK inhibitor) and assayed for TGF-βRII expression. EGFR activation was maximal 15 minutes after wounding and localized in the migrating epithelial cells. TGF-βRII localization was also observed in the migrating epithelium and was reduced when EGFR was blocked. When pHCE were treated with EGF for 6 hours, the cells produced enhanced levels of TGF-βRII, which was blocked by U0126. Downstream signaling pathways of MEK (p38 and ERK1/2) were then examined, and TGF-β1 and EGF were found to have differential effects on the phosphorylation of p38 and ERK1/2, with TGF-β1 upregulating p-p38 but not pERK1/2 and EGF upregulating pERK1/2 but not p-p38. Taken together, these data indicate that EGF stimulates TGF-βRII through ERK1/2 and EGFR signaling, suggesting interplay between EGF- and TGF-β-signaling pathways during corneal wound repair.

See also: Cornea, May 2019, All, 2019
Last updated on 06/04/2019