Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis.

Citation:

Srinivasan S, Chitalia V, Meyer RD, Hartsough E, Mehta M, Harrold I, Anderson N, Feng H, Smith LEH, Jiang Y, Costello CE, Rahimi N. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 2015;18(4):449-62.

Date Published:

2015 Oct

Abstract:

Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2.

Last updated on 01/25/2016