Short-Wavelength Automated Perimetry Parameters at Baseline and Following Remission in Patients With Birdshot Retinochoroidopathy.

Date Published:

2016 Mar


PURPOSE: To identify changes in short-wavelength automated perimetry patterns and parameters between the active and inactive states. DESIGN: Retrospective cohort study with age-matched, normal controls. METHODS: setting: Private tertiary referral center. STUDY POPULATION: Seventy-five eyes of 38 patients with active birdshot retinochoroidopathy and 37 eyes of 37 historical normal controls. INTERVENTION: Thirty-seven patients received immunomodulatory therapy. A fluocinolone acetonide intravitreal implant (Retisert) was implanted in both eyes of 1 patient as an initial treatment. MAIN OUTCOME MEASURES: Changes in short-wavelength automated perimetry total deviation scores, pattern deviation scores, mean deviation, and pattern standard deviation in the active phase and the remission state. RESULTS: Mean deviation (P = .006), pattern standard deviation (P = .001), total deviation score (P = .002), and pattern deviation score (P = .007) were significantly different from the active phase to the remission state. The length of time required to achieve remission did not significantly affect the changes in mean deviation (regression coefficient = 0.01; P = .92), pattern standard deviation (regression coefficient = 0.01; P = .87), total deviation score (regression coefficient = -0.1; P = .32), or pattern deviation score (regression coefficient = 0.1; P = .36) from the active phase to the remission state. CONCLUSION: There was significant improvement in total deviation score, pattern deviation score, mean deviation, and pattern standard deviation on short-wavelength automated perimetry as patients achieved remission. Short-wavelength automated perimetry appears to be a useful and complementary modality in monitoring disease activity in birdshot retinochoroidopathy.

Last updated on 03/21/2016