Cornea

Y
Yu C, Zou J, Ge Q-M, Liao X-L, Pan Y-C, Wu J-L, Su T, Zhang L-J, Liang R-B, Shao Y. Ocular microvascular alteration in Sjögren's syndrome treated with hydroxychloroquine: an OCTA clinical study. Ther Adv Chronic Dis 2023;14:20406223231164498.Abstract
BACKGROUND: Sjögren's syndrome (SjS) is a rare autoimmune disease, and despite our knowledge of SjS, we still lack effective treatments. Chloroquine drugs used to treat autoimmune diseases are still the primary medicine for SjS but increase the risk of chloroquine retinopathy. OBJECTIVES: The objective of this study is to use Optical Coherence Tomography Angiography (OCTA) images to monitor the microvascular changes in the fundus of SjS patients after hydroxychloroquine (HCQ) treatment and the feasibility of using them as diagnostic indicators. DESIGN: This is a retrospective observational cohort study. METHODS: Twelve healthy controls (HCs group; 24 eyes), 12 SjS patients (SjS group; 24 eyes), and 12 SjS patients treated with HCQ (HCQ group; 24 eyes) were recruited. Three-dimensional OCTA images of the retina were collected, and microvascular density was calculated for each eye. OCTA image segmentation for analysis was conducted using the central wheel division method (C1-C6), hemisphere segmentation method (SR, SL, IL, and IR), and the early treatment of diabetic retinopathy study method (ETDRS) (R, S, L, and I). RESULTS: Retinal microvascular density was significantly lower in the SjS patients compared to the HCs group (p < 0.05) and much lower in the HCQ group compared to the SjS patients (p < 0.05). The SjS and HCQ groups differed in the I, R, SR, IL, and IR regions in the superficial and deep retina and the S region in the superficial retina. The ROC curves of the relationship between the HCs and SjS groups and between the SjS and HCQ groups demonstrated good classification accuracy. CONCLUSION: HCQ may contribute significantly to the microvascular alteration in SjS. Microvascular alteration is a potential marker with adjunctive diagnostic value. The MIR and the OCTA images of I, IR, and C1 regions showed high accuracy in minoring the alteration.
Yu Z, Efstathiou NE, Correa VSMC, Chen XH, Ishihara K, Iesato Y, Narimatsu T, Ntentakis D, Chen Y, Vavvas DG. Receptor interacting protein 3 kinase, not 1 kinase, through MLKL-mediated necroptosis is involved in UVA-induced corneal endothelium cell death. Cell Death Discov 2021;7(1):366.Abstract
Ultraviolet (UV) is one of the most energetic radiations in the solar spectrum that can result in various tissue injury disorders. Previous studies demonstrated that UVA, which represents 95% of incident photovoltaic radiation, induces corneal endothelial cells (CECs) death. Programmed cell death (PCD) has been implicated in numerous ophthalmologic diseases. Here, we investigated receptor-interacting protein 3 kinase (RIPK3), a key signaling molecule of PCD, in UVA-induced injury using a short-term corneal endothelium (CE) culture model. UVA irradiation activated RIPK3 and mediated necroptosis both in mouse CE and primary human CECs (pHCECs). UVA irradiation was associated with upregulation of key necroptotic molecules (DAI, TRIF, and MLKL) that lie downstream of RIPK3. Moreover, RIPK3 inhibition or silencing in primary corneal endothelial cells suppresses UVA-induced cell death, along with downregulation of MLKL in pHCECs. In addition, genetic inhibition or knockout of RIPK3 in mice (RIPK3K51A and RIPK3-/- mice) similarly attenuates cell death and the levels of necroptosis in ex vivo UVA irradiation experiments. In conclusion, these results identify RIPK3, not RIPK1, as a critical regulator of UVA-induced cell death in CE and indicate its potential as a future protective target.
Yu M, Lee S-M, Lee HS, Amouzegar A, Nakao T, Chen Y, Dana R. Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation. Am J Pathol 2020;190(1):125-133.Abstract
Neuroinflammation plays an important role in the pathogenesis of ocular surface disease, including dry eye disease (DED), but little is known about the contribution of substance P (SP) to DED. In this study, we investigated the expression of SP at the ocular surface and evaluated its effect on maturation of antigen-presenting cells (APCs), the key cell component involved in the induction of type 17 helper T-cell (Th17) response in DED. The effect of topical blockade of SP signaling was further investigated using neurokinin-1 receptor (NK1R) inhibitors on APC maturation, Th17 cell activation, and disease severity in a mouse model of DED. The results demonstrate that SP is constitutively expressed at the ocular surface, and trigeminal ganglion neurons are the major source of SP in DED. SP derived from trigeminal ganglion enhanced the expression of major histocompatibility complex class II maturation marker by bone marrow-derived dendritic cells, an effect that is abrogated by blockade of SP signaling using NK1R antagonist spantide. Finally, using a well-established murine model of DED, topical treatment of DED mice with NK1R antagonists CP-99,994 and L-733,060 suppressed APC acquisition of major histocompatibility complex class II, reduced Th17 cell activity, and ameliorated DED severity. These findings are of translational value, as they suggest that antagonizing NK1R-mediated SP signaling may be an effective strategy in suppressing Th17-mediated ocular surface disease.
Yuan A, Ma K, Sharifi S, Pineda R. Biomechanical testing of flanged polypropylene sutures in scleral fixation. Am J Ophthalmol 2021;Abstract
OBJECTIVE: To optimize the flanged belt-loop technique of scleral fixation through biomechanical testing and report clinical outcomes of resultant modifications. DESIGN: Experimental study. METHODS: The force to disinsert flanged polypropylene suture from human cadaveric sclera was assessed using a tensile testing machine and compared to the breaking strengths of 9-0 and 10-0 polypropylene. The effects of modifying suture gauge (5-0, 6-0, 7-0 or 8-0), amount of suture cauterized (0.5 or 1.0mm), and sclerotomy size (27-, 30-, 32-, 33-gauge) were investigated. Belt-loop intrascleral fixation using 6-0 and 7-0 polypropylene with 30- and 32-gauge needles respectively was performed in 5 patients. MAIN OUTCOME MEASURES: Flanged suture disinsertion force in cadaveric sclera. RESULTS: The average force to disinsert a flange created by melting 1.0mm of 5-0, 6-0, 7-0 and 8-0 polypropylene suture from human cadaveric sclera via 27-, 30-, 32- and 33-gauge needle sclerotomies was 3.0 ± 0.5N, 2.1 ± 0.3N, 0.9 ± 0.2N and 0.4 ± 0.1N respectively. The disinsertion forces for flanges formed by melting 0.5mm of the same gauges were 72-79% lower (p < 0.001). In comparison, the breaking strengths of 9-0 and 10-0 polypropylene were 1.0 ± 0.2N and 0.5 ± 0.0N. Belt-loop fixation using 6-0 and 7-0 polypropylene with 30- and 32-gauge sclerotomies demonstrated good outcomes at 6 months. CONCLUSIONS: The flanged belt-loop technique is a biomechanically sound method of scleral fixation using 1.0mm flanges of 5-0 to 7-0 polypropylene paired with 27-, 30- and 32- gauge sclerotomies. In contrast, 8-0 polypropylene and 0.5 mm flanges of any suture gauge will likely be unstable with this technique.
Z
Zareian R, Susilo ME, Paten JA, McLean JP, Hollmann J, Karamichos D, Messer CS, Tambe DT, Saeidi N, Zieske JD, Ruberti JW. Human Corneal Fibroblast Pattern Evolution and Matrix Synthesis on Mechanically Biased Substrates. Tissue Eng Part A 2016;22(19-20):1204-1217.Abstract

In a fibroblast colony model of corneal stromal development, we asked how physiological tension influences the patterning dynamics of fibroblasts and the orientation of deposited extracellular matrix (ECM). Using long-term live-cell microscopy, enabled by an optically accessible mechanobioreactor, a primary human corneal fibroblast colony was cultured on three types of substrates: a mechanically biased, loaded, dense, disorganized collagen substrate (LDDCS), a glass coverslip, and an unloaded, dense, disorganized collagen substrate (UDDCS). On LDDCS, fibroblast orientation and migration along a preferred angle developed early, cell orientation was correlated over long distances, and the colony pattern was stable. On glass, fibroblast orientation was poorly correlated, developed more slowly, and colony patterns were metastable. On UDDCS, cell orientation was correlated over shorter distances compared with LDDCS specimens. On all substrates, the ECM pattern reflected the cell pattern. In summary, mechanically biasing the collagen substrate altered the early migration behavior of individual cells, leading to stable emergent cell patterning, which set the template for newly synthesized ECM.

Zhang Y, Kam WR, Liu Y, Chen X, Sullivan DA. Influence of Pilocarpine and Timolol on Human Meibomian Gland Epithelial Cells. Cornea 2017;36(6):719-724.Abstract
PURPOSE: Investigators have discovered that topical antiglaucoma drugs may induce meibomian gland dysfunction. This response may contribute to the dry eye disease commonly found in patients with glaucoma taking such medications. We hypothesize that drug action involves a direct effect on human meibomian gland epithelial cells (HMGECs). To test this hypothesis, we examined the influence of the antiglaucoma drugs, pilocarpine and timolol, on the morphology, survival, proliferation, and differentiation of HMGECs. METHODS: Immortalized (I) HMGECs (n = 2-3 wells/treatment/experiment) were cultured with multiple concentrations of pilocarpine or timolol for up to 7 days. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract) and differentiation (azithromycin). Cells were enumerated using a hemocytometer and evaluated for morphology, neutral lipid staining, and lysosome accumulation. RESULTS: Our results demonstrate that pilocarpine and timolol cause a dose-dependent decrease in the survival of IHMGECs. The clinically used concentrations are toxic and lead to cell atrophy, poor adherence, or death. By contrast, drug levels that are known to accumulate within the conjunctiva, adjacent to the meibomian glands, do not influence IHMGEC survival. These latter concentrations also have no effect on IHMGEC proliferation or differentiation, and they do not interfere with the ability of azithromycin to stimulate cellular neutral lipid and lysosome accumulation. This dose of pilocarpine, though, did suppress the epidermal growth factor+bovine pituitary extract-induced proliferation of IHMGECs. CONCLUSIONS: Our results support our hypothesis and demonstrate that these antiglaucoma drugs, pilocarpine and timolol, have direct effects on HMGECs that may influence their morphology, survival, and proliferative capacity.
Zhou C, Robert M-C, Kapoulea V, Lei F, Stagner AM, Jakobiec FA, Dohlman CH, Paschalis EI. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye. Invest Ophthalmol Vis Sci 2017;58(1):96-105.Abstract

Purpose: Tumor necrosis factor (TNF)-α is upregulated in eyes following corneal alkali injury and contributes to corneal and also retinal damage. Prompt TNF-α inhibition by systemic infliximab ameliorates retinal damage and improves corneal wound healing. However, systemic administration of TNF-α inhibitors carries risk of significant complications, whereas topical eye-drop delivery is hindered by poor ocular bioavailability and the need for patient adherence. This study investigates the efficacy of subconjunctival delivery of TNF-α antibodies using a polymer-based drug delivery system (DDS). Methods: The drug delivery system was prepared using porous polydimethylsiloxane/polyvinyl alcohol composite fabrication and loaded with 85 μg of infliximab. Six Dutch-belted pigmented rabbits received ocular alkali burn with NaOH. Immediately after the burn, subconjunctival implantation of anti-TNF-α DDS was performed in three rabbits while another three received sham DDS (without antibody). Rabbits were followed with photography for 3 months. Results: After 3 months, the device was found to be well tolerated by the host and the eyes exhibited less corneal damage as compared to eyes implanted with a sham DDS without drug. The low dose treatment suppressed CD45 and TNF-α expression in the burned cornea and inhibited retinal ganglion cell apoptosis and optic nerve degeneration, as compared to the sham DDS treated eyes. Immunolocalization revealed drug penetration in the conjunctiva, cornea, iris, and choroid, with residual infliximab in the DDS 3 months after implantation. Conclusions: This reduced-risk biologic DDS improves corneal wound healing and provides retinal neuroprotection, and may be applicable not only to alkali burns but also to other inflammatory surgical procedures such as penetrating keratoplasty and keratoprosthesis implantation.

Zhu H, Alt C, Webb RH, Melki S, Kochevar IE. Corneal Crosslinking With Rose Bengal and Green Light: Efficacy and Safety Evaluation. Cornea 2016;35(9):1234-41.Abstract

PURPOSE: To evaluate crosslinking of cornea in vivo using green light activation of Rose Bengal (RGX) and assess potential damaging effects of the green light on retina and iris. METHODS: Corneas of Dutch belted rabbits were de-epithelialized, then stained with Rose Bengal and exposed to green light, or not further treated. Corneal stiffness was measured by uniaxial tensiometry. Re-epithelialization was assessed by fluorescein fluorescence. Keratocytes were counted on hematoxylin and eosin (H&E)-stained sections, and iris cell damage was assessed by lactate dehydrogenase staining. Thermal effects on the blood-retinal barrier (BRB) were assessed by fluorescein angiography and those on photoreceptors, retinal pigment epithelium (RPE), and choriocapillaris by light microscopy and transmission electron microscopy. RESULTS: RGX (10-min irradiation; 150 J/cm) increased corneal stiffness 1.9-fold on day 1 (1.25 ± 0.21 vs. 2.38 ± 0.59 N/mm; P = 0.036) and 2.8-fold compared with controls on day 28 (1.70 ± 0.74 vs. 4.95 ± 1.86 N/mm; P = 0.003). Keratocytes decreased only in the anterior stroma on day 1 (24.0 ± 3.0 vs. 3.67 ± 4.73, P = 0.003) and recovered by day 28 (37.7 ± 8.9 vs. 34.5 ± 2.4, P = 0.51). Iris cells were not thermally damaged. No evidence of BRB breakdown was detected on days 1 or 28. Retina from RGX-treated eyes seemed normal with RPE cells showing intact nuclei shielded apically by melanosomes, morphologically intact photoreceptor outer segments, normal outer nuclear layer thickness, and choriocapillaris containing intact erythrocytes. CONCLUSIONS: The substantial corneal stiffening produced by RGX together with the lack of significant effects on keratocytes and no evidence for retina or iris damage suggest that RGX-initiated corneal crosslinking may be a safe, rapid, and effective treatment.

Ziaei A, Schmedt T, Chen Y, Jurkunas UV. Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis Sci 2013;54(10):6724-34.Abstract
PURPOSE: Fuchs endothelial corneal dystrophy (FECD) is an oxidative stress disorder that leads to age-related and gradual loss of corneal endothelial cells resulting in corneal edema and loss of vision. To date, other than surgical intervention, there are no treatment options for patients with FECD. We have shown that in FECD, there is a deficiency in nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defense due to decreased Nrf2 nuclear translocation and activation of antioxidant response element (ARE). In this study, we used sulforaphane (SFN) and D3T to investigate a strategy of targeting Nrf2-ARE in FECD. METHODS: FECD and normal ex vivo corneas and human corneal endothelial cell lines were pretreated with SFN or D3T and exposed to oxidative stress with tert-Butyl hydroperoxide (tBHP). Apoptosis was detected with TUNEL. Cellular localization of Nrf2 and p53 was assessed by immunohistochemistry. Effect of SFN was determined by using DCFDA assay, Western blot and real-time PCR. RESULTS: After pretreatment with SFN, oxidative stress was induced with tBHP. In ex vivo FECD specimens, SFN decreased CEC apoptosis by 55% in unstressed group and by 43% in tBHP-treated specimens. SFN enhanced nuclear translocation of Nrf2 in FECD specimens and decreased p53 staining under oxidative stress. Pretreatment with SFN enhanced cell viability by decreasing intracellular reactive oxygen species production. Upregulation of Nrf2 levels led to increased synthesis of DJ-1, heme oxygenase 1, and nicotinamide adenine dinucleotide quinone oxidoreductase-1. SFN significantly upregulated major ARE-dependent antioxidants and ameliorated oxidative stress-induced apoptosis in FECD. CONCLUSIONS: Our results suggest that targeting Nrf2-ARE pathway may arrest degenerative cell loss seen in FECD.
Zidan A, Barbosa J, Diskin J, McDermott M. Incidental finding of a retained intracorneal wooden foreign body. BMJ Case Rep 2023;16(12)Abstract
We present a case of an intracorneal wooden foreign body that remained undetected for 15 years following an ocular injury sustained during gardening. The patient presented with stable visual acuity despite the long-standing presence of a wooden splinter embedded in the cornea. Interestingly, Pentacam corneal tomography did not show any abnormalities despite the foreign body piercing through the corneal stroma and endothelium. This case may serve as an opportunity to re-examine the approach to managing chronic and stable intracorneal wooden foreign bodies and explore the implications of continued observation rather than surgical management.
Zieske JD, Hutcheon AEK, Guo X. Extracellular Vesicles and Cell-Cell Communication in the Cornea. Anat Rec (Hoboken) 2020;303(6):1727-1734.Abstract
One question that has intrigued cell biologists for many years is, "How do cells interact to influence one another's activity?" The discovery of extracellular vesicles (EVs) and the fact that they carry cargo, which directs cells to undergo changes in morphology and gene expression, has revolutionized this field of research. Little is known regarding the role of EVs in the cornea; however, we have demonstrated that EVs isolated from corneal epithelial cells direct corneal keratocytes to initiate fibrosis. Intriguingly, our data suggest that EVs do not penetrate epithelial basement membrane (BM), perhaps providing a mechanism explaining the importance of BM in the lack of scarring in scrape wounds. Since over 100-million people worldwide suffer from visual impairment as a result of corneal scarring, the role of EVs may be vital to understanding the mechanisms of wound repair. Therefore, we investigated EVs in ex vivo and in vivo-like three-dimensional cultures of human corneal cells using transmission electron microscopy. Some of the major findings were all three major cell types (epithelial, fibroblast, and endothelial cells) appear to release EVs, EVs can be identified using TEM, and EVs appeared to be involved in cell-cell communication. Interestingly, while our previous publication suggests that EVs do not penetrate the epithelial BM, it appears that EVs penetrate the much thicker endothelial BM (Descemet's membrane). These findings indicate the huge potential of EV research in the cornea and wound healing, and suggest that during homeostasis the endothelium and stromal cells are in communication. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
van Zyl T, Yan W, McAdams AM, Monavarfeshani A, Hageman GS, Sanes JR. Cell atlas of the human ocular anterior segment: Tissue-specific and shared cell types. Proc Natl Acad Sci U S A 2022;119(29):e2200914119.Abstract
The anterior segment of the eye consists of the cornea, iris, ciliary body, crystalline lens, and aqueous humor outflow pathways. Together, these tissues are essential for the proper functioning of the eye. Disorders of vision have been ascribed to defects in all of them; some disorders, including glaucoma and cataract, are among the most prevalent causes of blindness in the world. To characterize the cell types that compose these tissues, we generated an anterior segment cell atlas of the human eye using high-throughput single-nucleus RNA sequencing (snRNAseq). We profiled 195,248 nuclei from nondiseased anterior segment tissues of six human donors, identifying >60 cell types. Many of these cell types were discrete, whereas others, especially in the lens and cornea, formed continua corresponding to known developmental transitions that persist in adulthood. Having profiled each tissue separately, we performed an integrated analysis of the entire anterior segment, revealing that some cell types are unique to a single structure, whereas others are shared across tissues. The integrated cell atlas was then used to investigate cell type-specific expression patterns of more than 900 human ocular disease genes identified through either Mendelian inheritance patterns or genome-wide association studies.

Pages