Driving with hemianopia: III. Detection of stationary and approaching pedestrians in a simulator

Date Published:

2014 Jan 20

Abstract:

PURPOSE: To compare blind-side detection performance of drivers with homonymous hemianopia (HH) for stationary and approaching pedestrians, initially appearing at small (4°) or large (14°) eccentricities in a driving simulator. While the stationary pedestrians did not represent an imminent threat, as their eccentricity increased rapidly as the vehicle advanced, the approaching pedestrians maintained a collision course with approximately constant eccentricity, walking or running, toward the travel lane as if to cross. METHODS: Twelve participants with complete HH and without spatial neglect pressed the horn whenever they detected a pedestrian while driving along predetermined routes in two driving simulator sessions. Miss rates and reaction times were analyzed for 52 stationary and 52 approaching pedestrians. RESULTS: Miss rates were higher and reaction times longer on the blind than the seeing side (P < 0.01). On the blind side, miss rates were lower for approaching than stationary pedestrians (16% vs. 29%, P = 0.01), especially at larger eccentricities (20% vs. 54%, P = 0.005), but reaction times for approaching pedestrians were longer (1.72 vs. 1.41 seconds; P = 0.03). Overall, the proportion of potential blind-side collisions (missed and late responses) was not different for the two paradigms (41% vs. 35%, P = 0.48), and significantly higher than for the seeing side (3%, P = 0.002). CONCLUSIONS: In a realistic pedestrian detection task, drivers with HH exhibited significant blind-side detection deficits. Even when approaching pedestrians were detected, responses were often too late to avoid a potential collision.

Last updated on 11/11/2018