Genomics

A
de Almeida LM, Pires C, Cerdeira LT, de Oliveira TGM, McCulloch JA, Perez-Chaparro PJ, Sacramento AG, Brito AC, da Silva JL, de Araújo MRE, Lincopan N, Martin MJ, Gilmore MS, Mamizuka EM. Complete Genome Sequence of Linezolid-Susceptible Staphylococcus haemolyticus Sh29/312/L2, a Clonal Derivative of a Linezolid-Resistant Clinical Strain. Genome Announc 2015;3(3)Abstract

We report the whole-genome sequence (WGS) of an in vitro susceptible derivative revertant mutant from a bloodstream isolate involved in a nosocomial outbreak in Brazil. The WGS comprises 2.5 Mb with 2,500 protein-coding sequences, 16rRNA genes, and 60 tRNA genes.

Almeida LM, Lebreton F, Gaca A, Bispo PM, Saavedra JT, Calumby RN, Grillo LM, Nascimento TG, Filsner PH, Moreno AM, Gilmore MS. Transferable Resistance Gene in Enterococcus faecalis from Swine in Brazil. Antimicrob Agents Chemother 2020;64(6)Abstract
OptrA is an ATP-binding cassette (ABC)-F protein that confers resistance to oxazolidinones and phenicols and can be either plasmid-encoded or chromosomally encoded. Here, we isolated 13 strains possessing a linezolid MIC of ≥4 mg/liter from nursery pigs in swine herds located across Brazil. Genome sequence comparison showed that these strains possess in different genetic contexts occurring in 5 different sequence type backgrounds. The gene invariably occurred in association with an regulator and a gene encoding a hypothetical protein. In some contexts, this genetic island was able to excise and form a covalently closed circle within the cell; this circle appeared to occur in high abundance and to be transmissible by coresident plasmids.
Amamoto R, Garcia MD, West ER, Choi J, Lapan SW, Lane EA, Perrimon N, Cepko CL. Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. Elife 2019;8Abstract
Recent transcriptional profiling technologies are uncovering previously-undefined cell populations and molecular markers at an unprecedented pace. While single cell RNA (scRNA) sequencing is an attractive approach for unbiased transcriptional profiling of all cell types, a complementary method to isolate and sequence specific cell populations from heterogeneous tissue remains challenging. Here, we developed Probe-Seq, which allows deep transcriptional profiling of specific cell types isolated using RNA as the defining feature. Dissociated cells are labeled using fluorescent in situ hybridization (FISH) for RNA, and then isolated by fluorescent activated cell sorting (FACS). We used Probe-Seq to purify and profile specific cell types from mouse, human, and chick retinas, as well as from midguts. Probe-Seq is compatible with frozen nuclei, making cell types within archival tissue immediately accessible. As it can be multiplexed, combinations of markers can be used to create specificity. Multiplexing also allows for the isolation of multiple cell types from one cell preparation. Probe-Seq should enable RNA profiling of specific cell types from any organism.
Andzelm MM, Cherry TJ, Harmin DA, Boeke AC, Lee C, Hemberg M, Pawlyk B, Malik AN, Flavell SW, Sandberg MA, Raviola E, Greenberg ME. MEF2D Drives Photoreceptor Development through a Genome-wide Competition for Tissue-Specific Enhancers. Neuron 2015;86(1):247-63.Abstract

Organismal development requires the precise coordination of genetic programs to regulate cell fate and function. MEF2 transcription factors (TFs) play essential roles in this process but how these broadly expressed factors contribute to the generation of specific cell types during development is poorly understood. Here we show that despite being expressed in virtually all mammalian tissues, in the retina MEF2D binds to retina-specific enhancers and controls photoreceptor cell development. MEF2D achieves specificity by cooperating with a retina-specific factor CRX, which recruits MEF2D away from canonical MEF2 binding sites and redirects it to retina-specific enhancers that lack the consensus MEF2-binding sequence. Once bound to retina-specific enhancers, MEF2D and CRX co-activate the expression of photoreceptor-specific genes that are critical for retinal function. These findings demonstrate that broadly expressed TFs acquire specific functions through competitive recruitment to enhancers by tissue-specific TFs and through selective activation of these enhancers to regulate tissue-specific genes.

Arno G, Hull S, Carss K, Dev-Borman A, Chakarova C, Bujakowska K, van den Born I, Robson AG, Holder GE, Michaelides M, Cremers FPM, Pierce E, Raymond LF, Moore AT, Webster AR. Reevaluation of the Retinal Dystrophy Due to Recessive Alleles of RGR With the Discovery of a Cis-Acting Mutation in CDHR1. Invest Ophthalmol Vis Sci 2016;57(11):4806-13.Abstract

PURPOSE: Mutation of RGR, encoding retinal G-protein coupled receptor was originally reported in association with retinal dystrophy in 1999. A single convincing recessive variant segregated perfectly in one family of five affected and two unaffected siblings. At least one further individual, homozygous for the same variant has since been reported. The aim of this report was to reevaluate the findings in consideration of data from a whole genome sequencing (WGS) study of a large cohort of retinal dystrophy families. METHODS: Whole genome sequencing was performed on 599 unrelated probands with inherited retinal disease. Detailed phenotyping was performed, including clinical evaluation, electroretinography, fundus photography, fundus autofluorescence imaging (FAF) and spectral-domain optical coherence tomography (OCT). RESULTS: Overall we confirmed that affected individuals from six unrelated families were homozygous for both the reported RGR p.Ser66Arg variant and a nearby frameshifting deletion in CDHR1 (p.Ile841Serfs119*). All had generalized rod and cone dysfunction with severe macular involvement. An additional proband was heterozygous for the same CDHR1/RGR haplotype but also carried a second null CDHR1 mutation on a different haplotype. A comparison of the clinical presentation of the probands reported here with other CDHR1-related retinopathy patients shows the phenotypes to be similar in presentation, severity, and rod/cone involvement. CONCLUSIONS: These data suggest that the recessive retinal disorder previously reported to be due to homozygous mutation in RGR is, at least in part, due to variants in CDHR1 and that the true consequences of RGR knock-out on human retinal structure and function are yet to be determined.

Aung T, Ozaki M, Mizoguchi T, Allingham RR, Li Z, Haripriya A, Nakano S, Uebe S, Harder JM, Chan ASY, Lee MC, Burdon KP, Astakhov YS, Abu-Amero KK, Zenteno JC, Nilgün Y, Zarnowski T, Pakravan M, Safieh LA, Jia L, Wang YX, Williams S, Paoli D, Schlottmann PG, Huang L, Sim KS, Foo JN, Nakano M, Ikeda Y, Kumar RS, Ueno M, Manabe S-I, Hayashi K, Kazama S, Ideta R, Mori Y, Miyata K, Sugiyama K, Higashide T, Chihara E, Inoue K, Ishiko S, Yoshida A, Yanagi M, Kiuchi Y, Aihara M, Ohashi T, Sakurai T, Sugimoto T, Chuman H, Matsuda F, Yamashiro K, Gotoh N, Miyake M, Astakhov SY, Osman EA, Al-Obeidan SA, Owaidhah O, Al-Jasim L, Shahwan SA, Fogarty RA, Leo P, Yetkin Y, Oğuz Ç, Kanavi MR, Beni AN, Yazdani S, Akopov EL, Toh K-Y, Howell GR, Orr AC, Goh Y, Meah WY, Peh SQ, Kosior-Jarecka E, Lukasik U, Krumbiegel M, Vithana EN, Wong TY, Liu Y, Koch AAE, Challa P, Rautenbach RM, Mackey DA, Hewitt AW, Mitchell P, Wang JJ, Ziskind A, Carmichael T, Ramakrishnan R, Narendran K, Venkatesh R, Vijayan S, Zhao P, Chen X, Guadarrama-Vallejo D, Cheng CY, Perera SA, Husain R, Ho S-L, Welge-Luessen U-C, Mardin C, Schloetzer-Schrehardt U, Hillmer AM, Herms S, Moebus S, Nöthen MM, Weisschuh N, Shetty R, Ghosh A, Teo YY, Brown MA, Lischinsky I, Lischinsky I, Lischinsky I, Crowston JG, Coote M, Zhao B, Sang J, Zhang N, You Q, Vysochinskaya V, Founti P, Chatzikyriakidou A, Lambropoulos A, Anastasopoulos E, Coleman AL, Wilson RM, Rhee DJ, Kang JH, May-Bolchakova I, Heegaard S, Mori K, Alward WLM, Jonas JB, Xu L, Liebmann JM, Chowbay B, Schaeffeler E, Schwab M, Lerner F, Wang N, Yang Z, Frezzotti P, Kinoshita S, Fingert JH, Inatani M, Tashiro K, Reis A, Edward DP, Pasquale LR, Kubota T, Wiggs JL, Pasutto F, Topouzis F, Dubina M, Craig JE, Yoshimura N, Sundaresan P, John SWM, Ritch R, Hauser MA, Khor C-C. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet 2015;47(4):387-92.Abstract

Exfoliation syndrome (XFS) is the most common recognizable cause of open-angle glaucoma worldwide. To better understand the etiology of XFS, we conducted a genome-wide association study (GWAS) of 1,484 cases and 1,188 controls from Japan and followed up the most significant findings in a further 6,901 cases and 20,727 controls from 17 countries across 6 continents. We discovered a genome-wide significant association between a new locus (CACNA1A rs4926244) and increased susceptibility to XFS (odds ratio (OR) = 1.16, P = 3.36 × 10(-11)). Although we also confirmed overwhelming association at the LOXL1 locus, the key SNP marker (LOXL1 rs4886776) demonstrated allelic reversal depending on the ancestry group (Japanese: ORA allele = 9.87, P = 2.13 × 10(-217); non-Japanese: ORA allele = 0.49, P = 2.35 × 10(-31)). Our findings represent the first genetic locus outside of LOXL1 surpassing genome-wide significance for XFS and provide insight into the biology and pathogenesis of the disease.

Aung T, Ozaki M, Lee MC, Schlötzer-Schrehardt U, Thorleifsson G, Mizoguchi T, Igo RP, Haripriya A, Williams SE, Astakhov YS, Orr AC, Burdon KP, Nakano S, Mori K, Abu-Amero K, Hauser M, Li Z, Prakadeeswari G, Bailey JCN, Cherecheanu AP, Kang JH, Nelson S, Hayashi K, Manabe S-I, Kazama S, Zarnowski T, Inoue K, Irkec M, Coca-Prados M, Sugiyama K, Järvelä I, Schlottmann P, Lerner FS, Lamari H, Nilgün Y, Bikbov M, Park KH, Cha SC, Yamashiro K, Zenteno JC, Jonas JB, Kumar RS, Perera SA, Chan ASY, Kobakhidze N, George R, Vijaya L, Do T, Edward DP, de Juan Marcos L, Pakravan M, Moghimi S, Ideta R, Bach-Holm D, Kappelgaard P, Wirostko B, Thomas S, Gaston D, Bedard K, Greer WL, Yang Z, Chen X, Huang L, Sang J, Jia H, Jia L, Qiao C, Zhang H, Liu X, Zhao B, Wang Y-X, Xu L, Leruez S, Reynier P, Chichua G, Tabagari S, Uebe S, Zenkel M, Berner D, Mossböck G, Weisschuh N, Hoja U, Welge-Luessen U-C, Mardin C, Founti P, Chatzikyriakidou A, Pappas T, Anastasopoulos E, Lambropoulos A, Ghosh A, Shetty R, Porporato N, Saravanan V, Venkatesh R, Shivkumar C, Kalpana N, Sarangapani S, Kanavi MR, Beni AN, Yazdani S, Lashay A, Naderifar H, Khatibi N, Fea A, Lavia C, Dallorto L, Rolle T, Frezzotti P, Paoli D, Salvi E, Manunta P, Mori Y, Miyata K, Higashide T, Chihara E, Ishiko S, Yoshida A, Yanagi M, Kiuchi Y, Ohashi T, Sakurai T, Sugimoto T, Chuman H, Aihara M, Inatani M, Miyake M, Gotoh N, Matsuda F, Yoshimura N, Ikeda Y, Ueno M, Sotozono C, Jeoung JW, Sagong M, Park KH, Ahn J, Cruz-Aguilar M, Ezzouhairi SM, Rafei A, Chong YF, Ng XY, Goh SR, Chen Y, Yong VHK, Khan MI, Olawoye OO, Ashaye AO, Ugbede I, Onakoya A, Kizor-Akaraiwe N, Teekhasaenee C, Suwan Y, Supakontanasan W, Okeke S, Uche NJ, Asimadu I, Ayub H, Akhtar F, Kosior-Jarecka E, Lukasik U, Lischinsky I, Castro V, Grossmann RP, Megevand GS, Roy S, Dervan E, Silke E, Rao A, Sahay P, Fornero P, Cuello O, Sivori D, Zompa T, Mills RA, Souzeau E, Mitchell P, Wang JJ, Hewitt AW, Coote M, Crowston JG, Astakhov SY, Akopov EL, Emelyanov A, Vysochinskaya V, Kazakbaeva G, Fayzrakhmanov R, Al-Obeidan SA, Owaidhah O, Aljasim LA, Chowbay B, Foo JN, Soh RQ, Sim KS, Xie Z, Cheong AWO, Mok SQ, Soo HM, Chen XY, Peh SQ, Heng KK, Husain R, Ho S-L, Hillmer AM, Cheng C-Y, Escudero-Domínguez FA, González-Sarmiento R, Martinon-Torres F, Salas A, Pathanapitoon K, Hansapinyo L, Wanichwecharugruang B, Kitnarong N, Sakuntabhai A, Nguyn HX, Nguyn GTT, Nguyn TV, Zenz W, Binder A, Klobassa DS, Hibberd ML, Davila S, Herms S, Nöthen MM, Moebus S, Rautenbach RM, Ziskind A, Carmichael TR, Ramsay M, Álvarez L, García M, González-Iglesias H, Rodríguez-Calvo PP, Cueto LF-V, Oguz Ç, Tamcelik N, Atalay E, Batu B, Aktas D, Kasım B, Wilson RM, Coleman AL, Liu Y, Challa P, Herndon L, Kuchtey RW, Kuchtey J, Curtin K, Chaya CJ, Crandall A, Zangwill LM, Wong TY, Nakano M, Kinoshita S, den Hollander AI, Vesti E, Fingert JH, Lee RK, Sit AJ, Shingleton BJ, Wang N, Cusi D, Qamar R, Kraft P, Pericak-Vance MA, Raychaudhuri S, Heegaard S, Kivelä T, Reis A, Kruse FE, Weinreb RN, Pasquale LR, Haines JL, Thorsteinsdottir U, Jonasson F, Allingham RR, Milea D, Ritch R, Kubota T, Tashiro K, Vithana EN, Micheal S, Topouzis F, Craig JE, Dubina M, Sundaresan P, Stefansson K, Wiggs JL, Pasutto F, Khor CC. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet 2017;Abstract
Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 × 10(-14)) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10(-8)). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.
B
Ba-Abbad R, Leys M, Wang X, Chakarova C, Waseem N, Carss KJ, Raymond LF, Bujakowska KM, Pierce EA, Mahroo OA, Mohamed MD, Holder GE, Hummel M, Arno G, Webster AR. Clinical Features of a Retinopathy Associated With a Dominant Allele of the RGR Gene. Invest Ophthalmol Vis Sci 2018;59(12):4812-4820.Abstract
Purpose: We describe the clinical features in two pedigrees with dominantly inherited retinopathy segregating the previously reported frameshifting mutation, c.836dupG (p.Ile280Asn*78) in the terminal exon of the RGR gene, and compare their haplotypes to that of the previously reported pedigree. Methods: The probands were ascertained at West Virginia University Eye Institute (WVU) and Moorfields Eye Hospital (MEH) through next generation sequencing (NGS) and whole genome sequencing (WGS) respectively. Clinical data included visual acuity (VA), visual fields, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electroretinography (ERG). Haplotype analysis was performed using Sanger sequencing of the DNA from the molecularly ascertained individuals from the three pedigrees. Results: Nine heterozygous mutation carriers were identified in two families. Four carriers were asymptomatic; five carriers had variable VA reduction, visual field constriction, and experienced difficulty under dim illumination. Fundus examination of the asymptomatic carriers showed diffuse or reticular pigmentation of the retina; the symptomatic carriers had chorioretinal atrophy. FAF imaging showed widespread signal loss in advanced retinopathy, and reticular hyperautofluorescence in mild cases. OCT showed loss of outer retinal lamina in advanced disease. ERG showed moderate-to-severe rod-cone dysfunction in two symptomatic carriers; and was normal in three asymptomatic carriers. A shared haplotype flanking the mutation of up to 6.67 Mb was identified in both families. Within this region, 1.27 Mb were shared with the first family reported with this retinopathy. Conclusions: The clinical data suggest a variable and slow degeneration of the RPE. A shared chromosomal segment surrounding the RGR gene suggests a single ancestral mutational event underlying all three families.
Bailey JCN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo RP, Hysi PG, Glastonbury CA, Ashley-Koch A, Brilliant M, Brown AA, Budenz DL, Buil A, Cheng C-Y, Choi H, Christen WG, Curhan G, De Vivo I, Fingert JH, Foster PJ, Fuchs C, Gaasterland D, Gaasterland T, Hewitt AW, Hu F, Hunter DJ, Khawaja AP, Lee RK, Li Z, Lichter PR, Mackey DA, McGuffin P, Mitchell P, Moroi SE, Perera SA, Pepper KW, Qi Q, Realini T, Richards JE, Ridker PM, Rimm E, Ritch R, Ritchie M, Schuman JS, Scott WK, Singh K, Sit AJ, Song YE, Tamimi RM, Topouzis F, Viswanathan AC, Verma SS, Vollrath D, Wang JJ, Weisschuh N, Wissinger B, Wollstein G, Wong TY, Yaspan BL, Zack DJ, Zhang K, Study E-NE, Study E-NE, Weinreb RN, Pericak-Vance MA, Small K, Hammond CJ, Aung T, Liu Y, Vithana EN, Macgregor S, Craig JE, Kraft P, Howell G, Hauser MA, Pasquale LR, Haines JL, Wiggs JL. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet 2016;48(2):189-94.Abstract

Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. To identify new susceptibility loci, we performed meta-analysis on genome-wide association study (GWAS) results from eight independent studies from the United States (3,853 cases and 33,480 controls) and investigated the most significantly associated SNPs in two Australian studies (1,252 cases and 2,592 controls), three European studies (875 cases and 4,107 controls) and a Singaporean Chinese study (1,037 cases and 2,543 controls). A meta-analysis of the top SNPs identified three new associated loci: rs35934224[T] in TXNRD2 (odds ratio (OR) = 0.78, P = 4.05 × 10(-11)) encoding a mitochondrial protein required for redox homeostasis; rs7137828[T] in ATXN2 (OR = 1.17, P = 8.73 × 10(-10)); and rs2745572[A] upstream of FOXC1 (OR = 1.17, P = 1.76 × 10(-10)). Using RT-PCR and immunohistochemistry, we show TXNRD2 and ATXN2 expression in retinal ganglion cells and the optic nerve head. These results identify new pathways underlying POAG susceptibility and suggest new targets for preventative therapies.

Balasubramanian R, Chew S, MacKinnon SE, Kang PB, Andrews C, Chan W-M, Engle EC. Expanding the phenotypic spectrum and variability of endocrine abnormalities associated with TUBB3 E410K syndrome. J Clin Endocrinol Metab 2015;100(3):E473-7.Abstract

CONTEXT: A heterozygous de novo c.1228G>A mutation (E410K) in the TUBB3 gene encoding the neuronal-specific β-tubulin isotype 3 (TUBB3) causes the TUBB3 E410K syndrome characterized by congenital fibrosis of the extraocular muscles (CFEOM), facial weakness, intellectual and social disabilities, and Kallmann syndrome (anosmia with hypogonadotropic hypogonadism). All TUBB3 E410K subjects reported to date are sporadic cases. OBJECTIVE: This study aimed to report the clinical, genetic, and molecular features of a familial presentation of the TUBB3 E410K syndrome. DESIGN: Case report of a mother and three affected children with clinical features of the TUBB3 E410K syndrome. SETTING: Academic Medical Center. MAIN OUTCOME MEASURES: Genetic analysis of the TUBB3 gene and clinical evaluation of endocrine and nonendocrine phenotypes. RESULTS: A de novo TUBB3 c.1228G>A mutation arose in a female proband who displayed CFEOM, facial weakness, intellectual and social disabilities, and anosmia. However, she underwent normal sexual development at puberty and had three spontaneous pregnancies with subsequent autosomal-dominant inheritance of the mutation by her three boys. All sons displayed nonendocrine features of the TUBB3 E410K syndrome similar to their mother but, in addition, had variable features suggestive of additional endocrine abnormalities. CONCLUSIONS: This first report of an autosomal-dominant inheritance of the TUBB3 c.1228G>A mutation in a family provides new insights into the spectrum and variability of endocrine phenotypes associated with the TUBB3 E410K syndrome. These observations emphasize the need for appropriate clinical evaluation and complicate genetic counseling of patients and families with this syndrome.

Baris HN, Chan W-M, Andrews C, Behar DM, Donovan DJ, Morton CC, Ranells J, Pal T, Ligon AH, Engle EC. Complex cytogenetic rearrangements at the DURS1 locus in syndromic Duane retraction syndrome. Clin Case Rep 2013;1(1)
Benaglio P, San Jose PF, Avila-Fernandez A, Ascari G, Harper S, Manes G, Ayuso C, Hamel C, Berson EL, Rivolta C. Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa. Mol Vis 2014;20:843-51.Abstract

PURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.

Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, Elci OU, Chung DC, Sun J, Wright FJ, Cross DR, Aravand P, Cyckowski LL, Bennicelli JL, Mingozzi F, Auricchio A, Pierce EA, Ruggiero J, Leroy BP, Simonelli F, High KA, Maguire AM. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 2016;Abstract

BACKGROUND: Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. METHODS: In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1·5 × 10(11) vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11-46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1·71-4·58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389. FINDINGS: No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0·0003, white light full-field sensitivity p<0·0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0·7398, white light full-field sensitivity p=0·6709). Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the second eyes or the previously injected eyes (p>0·49 for all time-points compared with baseline). INTERPRETATION: To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that contribute to maximal benefit from gene augmentation therapy in this disease. FUNDING: Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby Foundation, and The Research Foundation-Flanders.

Bonnemaijer PWM, Iglesias AI, Nadkarni GN, Sanyiwa AJ, Hassan HG, Cook C, Cook C, Simcoe M, Taylor KD, Schurmann C, Belbin GM, Kenny EE, Bottinger EP, van de Laar S, Wiliams SEI, Akafo SK, Ashaye AO, Zangwill LM, Girkin CA, Ng MCY, Rotter JI, Weinreb RN, Li Z, Allingham RR, of Consortium EAG, Nag A, Hysi PG, Meester-Smoor MA, Wiggs JL, Wiggs JL, Hauser MA, Hammond CJ, Lemij HG, Loos RJF, van Duijn CM, Thiadens AAHJ, Klaver CCW. Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Hum Genet 2018;137(10):847-862.Abstract
Primary open angle glaucoma (POAG) is a complex disease with a major genetic contribution. Its prevalence varies greatly among ethnic groups, and is up to five times more frequent in black African populations compared to Europeans. So far, worldwide efforts to elucidate the genetic complexity of POAG in African populations has been limited. We conducted a genome-wide association study in 1113 POAG cases and 1826 controls from Tanzanian, South African and African American study samples. Apart from confirming evidence of association at TXNRD2 (rs16984299; OR 1.20; P = 0.003), we found that a genetic risk score combining the effects of the 15 previously reported POAG loci was significantly associated with POAG in our samples (OR 1.56; 95% CI 1.26-1.93; P = 4.79 × 10). By genome-wide association testing we identified a novel candidate locus, rs141186647, harboring EXOC4 (OR 0.48; P = 3.75 × 10), a gene transcribing a component of the exocyst complex involved in vesicle transport. The low frequency and high degree of genetic heterogeneity at this region hampered validation of this finding in predominantly West-African replication sets. Our results suggest that established genetic risk factors play a role in African POAG, however, they do not explain the higher disease load. The high heterogeneity within Africans remains a challenge to identify the genetic commonalities for POAG in this ethnicity, and demands studies of extremely large size.
Bronstein R, Capowski EE, Mehrotra S, Jansen AD, Navarro-Gomez D, Maher M, Place E, Sangermano R, Bujakowska KM, Gamm DM, Pierce EA. A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum Mol Genet 2020;29(6):967-979.Abstract
Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.
Brownstein CA, Kleiman RJ, Engle EC, Towne MC, D'Angelo EJ, Yu TW, Beggs AH, Picker J, Fogler JM, Carroll D, Schmitt RCO, Wolff RR, Shen Y, Lip V, Bilguvar K, Kim A, Tembulkar S, O'Donnell K, Gonzalez-Heydrich J. Overlapping 16p13.11 deletion and gain of copies variations associated with childhood onset psychosis include genes with mechanistic implications for autism associated pathways: Two case reports. Am J Med Genet A 2016;170(5):1165-73.Abstract

Copy number variability at 16p13.11 has been associated with intellectual disability, autism, schizophrenia, epilepsy, and attention-deficit hyperactivity disorder. Adolescent/adult- onset psychosis has been reported in a subset of these cases. Here, we report on two children with CNVs in 16p13.11 that developed psychosis before the age of 7. The genotype and neuropsychiatric abnormalities of these patients highlight several overlapping genes that have possible mechanistic relevance to pathways previously implicated in Autism Spectrum Disorders, including the mTOR signaling and the ubiquitin-proteasome cascades. A careful screening of the 16p13.11 region is warranted in patients with childhood onset psychosis. © 2016 Wiley Periodicals, Inc.

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot M-E, Antonio A, Lonjou C, Carpentier W, Mohand-Saïd S, den Hollander AI, Cremers FPM, Leroy BP, Gai X, Sahel J-A, van den Born IL, Collin RWJ, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet 2015;24(1):230-42.Abstract
Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.
Bujakowska KM, Consugar M, Place E, Harper S, Lena J, Taub DG, White J, Navarro-Gomez D, Weigel DiFranco C, Farkas MH, Gai X, Berson EL, Pierce EA. Targeted exon sequencing in Usher syndrome type I. Invest Ophthalmol Vis Sci 2014;55(12):8488-96.Abstract

PURPOSE: Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. METHODS: The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. RESULTS: With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study.

Bujakowska KM, Fernandez-Godino R, Place E, Consugar M, Navarro-Gomez D, White J, Bedoukian EC, Zhu X, Xie HM, Gai X, Leroy BP, Pierce EA. Copy-number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genet Med 2017;19(6):643-651.Abstract
PURPOSE: Despite substantial progress in sequencing, current strategies can genetically solve only approximately 55-60% of inherited retinal degeneration (IRD) cases. This can be partially attributed to elusive mutations in the known IRD genes, which are not easily identified by the targeted next-generation sequencing (NGS) or Sanger sequencing approaches. We hypothesized that copy-number variations (CNVs) are a major contributor to the elusive genetic causality of IRDs. METHODS: Twenty-eight cases previously unsolved with a targeted NGS were investigated with whole-genome single-nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) arrays. RESULTS: Deletions in the IRD genes were detected in 5 of 28 families, including a de novo deletion. We suggest that the de novo deletion occurred through nonallelic homologous recombination (NAHR) and we constructed a genomic map of NAHR-prone regions with overlapping IRD genes. In this article, we also report an unusual case of recessive retinitis pigmentosa due to compound heterozygous mutations in SNRNP200, a gene that is typically associated with the dominant form of this disease. CONCLUSIONS: CNV mapping substantially increased the genetic diagnostic rate of IRDs, detecting genetic causality in 18% of previously unsolved cases. Extending the search to other structural variations will probably demonstrate an even higher contribution to genetic causality of IRDs.Genet Med advance online publication 13 October 2016.
Buskin A, Zhu L, Chichagova V, Basu B, Mozaffari-Jovin S, Dolan D, Droop A, Collin J, Bronstein R, Mehrotra S, Farkas M, Hilgen G, White K, Pan K-T, Treumann A, Hallam D, Bialas K, Chung G, Mellough C, Ding Y, Krasnogor N, Przyborski S, Zwolinski S, Al-Aama J, Alharthi S, Xu Y, Wheway G, Szymanska K, McKibbin M, Inglehearn CF, Elliott DJ, Lindsay S, Ali RR, Steel DH, Armstrong L, Sernagor E, Urlaub H, Pierce E, Lührmann R, Grellscheid S-N, Johnson CA, Lako M. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun 2018;9(1):4234.Abstract
Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31 mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31 mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.

Pages