Imaging and Diagnostics

R
Ravindran K, Schmalz P, Torun N, Ronthal M, Chang Y-M, Thomas AJ. Angiographic Findings in the Tolosa-Hunt Syndrome and Resolution after Corticosteroid Treatment. Neuroophthalmology 2018;42(3):159-163.Abstract
The Tolosa-Hunt syndrome is a rare clinical condition characterized by painful opthalmoparesis associated with idiopathic granulomatous inflammation of the orbital apex and cavernous sinus. Historically, this condition was thought to result from arteritic changes in the internal carotid artery and cavernous sinus. Modern digital angiographic techniques were unavailable when THS was initially described, and few reports exist on its high-resolution angiographic findings. Painful ophthalmoparesis, especially of the oculomotor nerve, warrants vascular imaging because of the concern for an underlying aneurysm. Here, we describe angiographic findings of THS which may be useful for clinicians when encountering patients presenting with painful ophthalmoplegia.
Rong AJ, Fan KC, Golshani B, Bobinski M, McGahan JP, Eliott D, Morse LS, Modjtahedi BS. Multimodal imaging features of intraocular foreign bodies. Semin Ophthalmol 2019;:1-15.Abstract
: To determine the imaging approach for evaluating intraocular foreign bodies (IOFBs) by comparing the ability of different modalities [plain film x-ray, computed tomography (CT), magnetic resonsance imaging (MRI), convetional ultrasound, and ultrasound biomicroscopy] to detect and characterize IOFBs. : Systematic review of the literature. : CT is the most practical first step for evaluating patients with suspected IOFBs because it can detect a wide range of IOFB types at small limitis of detection. MRI and ultrasound are best reserved as adjunctive tests in most cases although these tests may provide important insights especially with wood, plastic, and glass IOFBs. Imaging characteristics of metal, wood, glass, plastic, stone, concrete, and graphite IOFBs are reviewed. : Understanding the limits of detection for each IOFB type and imaging modality as well as the characteristic features of different IOFBs is of paramount importance to optimizing the management of ocular trauma patients.
S
Sajdak BS, Salmon AE, Cava JA, Allen KP, Freling S, Ramamirtham R, Norton TT, Roorda A, Carroll J. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology. Exp Eye Res 2019;185:107683.Abstract
Tree shrews are small mammals with excellent vision and are closely related to primates. They have been used extensively as a model for studying refractive development, myopia, and central visual processing and are becoming an important model for vision research. Their cone dominant retina (∼95% cones) provides a potential avenue to create new damage/disease models of human macular pathology and to monitor progression or treatment response. To continue the development of the tree shrew as an animal model, we provide here the first measurements of higher order aberrations along with adaptive optics scanning light ophthalmoscopy (AOSLO) images of the photoreceptor mosaic in the tree shrew retina. To compare intra-animal in vivo and ex vivo cone density measurements, the AOSLO images were matched to whole-mount immunofluorescence microscopy. Analysis of the tree shrew wavefront indicated that the optics are well-matched to the sampling of the cone mosaic and is consistent with the suggestion that juvenile tree shrews are nearly emmetropic (slightly hyperopic). Compared with in vivo measurements, consistently higher cone density was measured ex vivo, likely due to tissue shrinkage during histological processing. Tree shrews also possess massive mitochondria ("megamitochondria") in their cone inner segments, providing a natural model to assess how mitochondrial size affects in vivo retinal imagery. Intra-animal in vivo and ex vivo axial distance measurements were made in the outer retina with optical coherence tomography (OCT) and transmission electron microscopy (TEM), respectively, to determine the origin of sub-cellular cone reflectivity seen on OCT. These results demonstrate that these megamitochondria create an additional hyper-reflective outer retinal reflective band in OCT images. The ability to use noninvasive retinal imaging in tree shrews supports development of this species as a model of cone disorders.
Salongcay RP, Aquino LAC, Salva CMG, Saunar AV, Alog GP, Sun JK, Peto T, Silva PS. Comparison of Handheld Retinal Imaging with ETDRS 7-Standard Field Photography for Diabetic Retinopathy and Diabetic Macular Edema. Ophthalmol Retina 2022;6(7):548-556.Abstract
PURPOSE: To compare nonmydriatic (NM) and mydriatic (MD) handheld retinal imaging with standard ETDRS 7-field color fundus photography (ETDRS photographs) for the assessment of diabetic retinopathy (DR) and diabetic macular edema (DME). DESIGN: Prospective, comparative, instrument validation study. SUBJECTS: A total of 225 eyes from 116 patients with diabetes mellitus. METHODS: Following a standardized protocol, NM and MD images were acquired using handheld retinal cameras (NM images: Aurora, Smartscope, and RetinaVue-700; MD images: Aurora, Smartscope, RetinaVue-700, and iNview) and dilated ETDRS photographs. Grading was performed at a centralized reading center using the International Clinical Classification for DR and DME. Kappa statistics (simple [K], weighted [Kw]) assessed the level of agreement for DR and DME. Sensitivity and specificity were calculated for any DR, referable DR (refDR), and vision-threatening DR (vtDR). MAIN OUTCOME MEASURES: Agreement for DR and DME; sensitivity and specificity for any DR, refDR, and vtDR; ungradable rates. RESULTS: Severity by ETDRS photographs: no DR, 33.3%; mild nonproliferative DR, 20.4%; moderate DR, 14.2%; severe DR, 11.6%; proliferative DR, 20.4%; no DME, 68.0%; DME, 9.3%; non-center involving clinically significant DME, 4.9%; center-involving clinically significant DME, 12.4%; and ungradable, 5.3%. For NM handheld retinal imaging, Kw was 0.70 to 0.73 for DR and 0.76 to 0.83 for DME. For MD handheld retinal imaging, Kw was 0.68 to 0.75 for DR and 0.77 to 0.91 for DME. Thresholds for sensitivity (0.80) and specificity (0.95) were met by NM images acquired using Smartscope and MD images acquired using Aurora and RetinaVue-700 cameras for any DR and by MD images acquired using Aurora and RetinaVue-700 cameras for refDR. Thresholds for sensitivity and specificity were met by MD images acquired using Aurora and RetinaVue-700 for DME. Nonmydriatic and MD ungradable rates for DR were 15.1% to 38.3% and 0% to 33.8%, respectively. CONCLUSIONS: Following standardized protocols, NM and MD handheld retinal imaging devices have substantial agreement levels for DR and DME. With mydriasis, not all handheld retinal imaging devices meet standards for sensitivity and specificity in identifying any DR and refDR. None of the handheld devices met the established 95% specificity for vtDR, suggesting that lower referral thresholds should be used if handheld devices must be utilized. When using handheld devices, the ungradable rate is significantly reduced with mydriasis and DME sensitivity thresholds are only achieved following dilation.
Sampson JF, Hasegawa E, Mulki L, Suryawanshi A, Jiang S, Chen W-S, Rabinovich GA, Connor KM, Panjwani N. Galectin-8 Ameliorates Murine Autoimmune Ocular Pathology and Promotes a Regulatory T Cell Response. PLoS One 2015;10(6):e0130772.Abstract

Galectins have emerged as potent immunoregulatory agents that control chronic inflammation through distinct mechanisms. Here, we report that treatment with Galectin-8 (Gal-8), a tandem-repeat member of the galectin family, reduces retinal pathology and prevents photoreceptor cell damage in a murine model of experimental autoimmune uveitis. Gal-8 treatment increased the number of regulatory T cells (Treg) in both the draining lymph node (dLN) and the inflamed retina. Moreover, a greater percentage of Treg cells in the dLN and retina of Gal-8 treated animals expressed the inhibitory coreceptor cytotoxic T lymphocyte antigen (CTLA)-4, the immunosuppressive cytokine IL-10, and the tissue-homing integrin CD103. Treg cells in the retina of Gal-8-treated mice were primarily inducible Treg cells that lack the expression of neuropilin-1. In addition, Gal-8 treatment blunted production of inflammatory cytokines by retinal T helper type (TH) 1 and TH17 cells. The effect of Gal-8 on T cell differentiation and/or function was specific for tissues undergoing an active immune response, as Gal-8 treatment had no effect on T cell populations in the spleen. Given the need for rational therapies for managing human uveitis, Gal-8 emerges as an attractive therapeutic candidate not only for treating retinal autoimmune diseases, but also for other TH1- and TH17-mediated inflammatory disorders.

Schill HM, Wolfe JM, Brady TF. Relationships between expertise and distinctiveness: Abnormal medical images lead to enhanced memory performance only in experts. Mem Cognit 2021;49(6):1067-1081.Abstract
Memories are encoded in a manner that depends on our knowledge and expectations ("schemas"). Consistent with this, expertise tends to improve memory: Experts have elaborated schemas in their domains of expertise, allowing them to efficiently represent information in this domain (e.g., chess experts have enhanced memory for realistic chess layouts). On the other hand, in most situations, people tend to remember abnormal or surprising items best-those that are also rare or out-of-the-ordinary occurrences (e.g., surprising-but not random-chess board configurations). This occurs, in part, because such images are distinctive relative to other images. In the current work, we ask how these factors interact in a particularly interesting case-the domain of radiology, where experts actively search for abnormalities. Abnormality in mammograms is typically focal but can be perceived in the global "gist" of the image. We ask whether, relative to novices, expert radiologists show improved memory for mammograms. We also test for any additional advantage for abnormal mammograms that can be thought of as unexpected or rare stimuli in screening. We find that experts have enhanced memory for focally abnormal images relative to normal images. However, radiologists showed no memory benefit for images of the breast that were not focally abnormal, but were only abnormal in their gist. Our results speak to the role of schemas and abnormality in expertise; the necessity for spatially localized abnormalities versus abnormalities in the gist in enhancing memory; and the nature of memory and decision-making in radiologists.
Seely KR, Weinert MC, Hong GJ, Wang W, Grace S, Freedman SF, Toth CA, Prakalapakorn GS. Semi-automated vessel analysis of en face posterior pole vessel maps generated from optical coherence tomography for diagnosis of plus or pre-plus disease. J AAPOS 2022;
SH P, ME C, AF J, MG V, MA K, G M. Imaging appearance of the lateral rectus-superior rectus band in 100 consecutive patients without strabismus. AJNR Am J Neuroradiol 2014;35(9):1830-5.
Siddiqui Y, Yin J. Anterior Segment Applications of Optical Coherence Tomography Angiography. Semin Ophthalmol 2019;:1-6.Abstract
: To review the current literature regarding optical coherence tomography angiography (OCT-A) applications in the anterior segment. : A literature search was performed for terms including OCT-Angiography, anterior segment, cornea, conjunctiva, iris, applications and use in ophthalmology. : Fifteen studies were identified, 14 in human subjects. Studies with OCT-A of the conjunctiva, episclera, cornea, and iris were identified, some with normal eyes imaged and others with various pathologies. Most of these studies imaged corneal neovascularization. Three studies described protocols used for image acquisition, one of which was referenced by two later papers. : OCT-A is a noninvasive technology with recent applications in the anterior segment. Several pilot studies have been performed on various anterior segment structures and disease states however standardization of image acquisition techniques is still needed. Future imaging could allow noninvasive and serial monitoring of pathology as well as recurrence after therapeutic intervention.
Sun P, Tandias RM, Yu G, Arroyo JG. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS AND VISUAL OUTCOME AFTER TREATMENT FOR VITREOMACULAR TRACTION. Retina 2019;39(6):1054-1060.Abstract
PURPOSE: To evaluate the capacity of spectral domain optical coherence tomography macular findings to predict best-corrected visual acuity (BCVA) outcomes after treatment for symptomatic vitreomacular traction. METHODS: This consecutive, retrospective study included 24 patients (29 eyes) who experienced vitreomacular traction release with pneumatic vitreolysis (n = 9), intravitreal ocriplasmin (n = 6), or pars plana vitrectomy (n = 14). Preoperative and postoperative spectral domain optical coherence tomography images were used to determine the cone outer segment tips (COST) line, inner segment/outer segment line, and other frequently used features. Correlations between optical coherence tomography findings and BCVA were determined using regression analyses. RESULTS: Postoperative BCVA was correlated with length of the COST line and inner segment/outer segment line defects at 1, 3, 6, and 12 months postoperatively (P < 0.05) by simple linear regression analysis. However, multivariable regression analysis showed that only length of the COST line defect was significantly correlated with BCVA preoperatively and postoperatively (P < 0.05). Postoperative BCVA improvement at 12 months was significantly correlated with preoperative length of the COST line defect (P < 0.01). CONCLUSION: Recovery of the COST line and inner segment/outer segment line defects as observed by spectral domain optical coherence tomography is positively correlated with visual acuity improvement after successful vitreomacular traction treatment. Best-corrected visual acuity improvement may be predicted using the length of the preoperative COST line defect.
Sun JK, Josic K, Melia M, Glassman AR, Bailey C, Chalam KV, Chew EY, Cukras C, Grover S, Jaffe GJ, Lee R, Nielsen JS, Thompson DJS, Wiley HE, Ferris FL, Ferris FL. Conversion of Central Subfield Thickness Measurements of Diabetic Macular Edema Across Cirrus and Spectralis Optical Coherence Tomography Instruments. Transl Vis Sci Technol 2021;10(14):34.Abstract
Purpose: Develop equations to convert Cirrus central subfield thickness (CST) to Spectralis CST equivalents and vice versa in eyes with diabetic macular edema (DME). Methods: The DRCR Retina Network Protocol O data were split randomly to train (70% sample) and validate (30% sample) conversion equations. Data from an independent study (CADME) also validated the equations. Bland-Altman 95% limits of agreement between predicted and observed values evaluated the equations. Results: Protocol O included 374 CST scan pairs from 187 eyes (107 participants). The CADME study included 150 scan pairs of 37 eyes (37 participants). Proposed conversion equations are Spectralis = 40.78 + 0.95 × Cirrus and Cirrus = 1.82 + 0.94 × Spectralis regardless of age, sex, or CST. Predicted values were within 10% of observed values in 101 (90%) of Spectralis and 99 (88%) of Cirrus scans in the validation data; and in 136 (91%) of the Spectralis and 148 (99%) of the Cirrus scans in the CADME data. Adjusting for within-eye correlations, 95% of conversions are estimated to be within 17% (95% confidence interval, 14%-21%) of CST on Spectralis and within 22% (95% confidence interval, 18%-28%) of CST on Cirrus. Conclusions: Conversion equations developed in this study allow the harmonization of CST measurements for eyes with DME using a mix of current Cirrus and Spectralis device images. Translational Relevance: The CSTs measured on Cirrus and Spectralis devices are not directly comparable owing to outer boundary segmentation differences. Converting CST values across spectral domain optical coherence tomography instruments should benefit both clinical research and standard care efforts.
V
Vavvas DG, Sarraf D, Sadda SR, Eliott D, Ehlers JP, Waheed NK, Morizane Y, Sakamoto T, Tsilimbaris M, Miller JB. Concerns about the interpretation of OCT and fundus findings in COVID-19 patients in recent Lancet publication. Eye (Lond) 2020;34(12):2153-2154.
Vira J, Marchese A, Singh RB, Agarwal A. Swept-source optical coherence tomography imaging of the retinochoroid and beyond. Expert Rev Med Devices 2020;17(5):413-426.Abstract
: Swept-source optical coherence tomography (SS-OCT) imaging has ushered in an era of rapid and high-resolution imaging of the retinochoroid that provides detailed patho-anatomy of various layers.: In this detailed review, the technology of swept-source imaging including its principles and working has been discussed. The applications of SS-OCT in various conditions including age-related macular degeneration, diabetic retinopathy, pachychoroid spectrum of diseases, and inflammatory vitreoretinal conditions have been elaborated. For each disease, a brief review of literature along with the utility of SS-OCT and optical coherence tomography angiography has been provided with supporting figures. The advantages of SS-OCT over spectral-domain have been discussed if there is sufficient evidence in the literature. Finally, the review summarizes the technological advantages in this field of retinal imaging.: The introduction of SS-OCT in our clinics has added newer devices in our armamentarium that can provide high-quality images of the deep retina and choroid. These advances in medical devices can help in improving our knowledge relating to the pathophysiology of diseases and their evolution. In the near future, rapid and high-resolution imaging may provide real-time volumetric information of the whole retina and the choroid that can be readily used for patient care.
W
Wang JC, Lu Y, Sobrin L, Husain D. MULTIMODAL IMAGING IN ACUTE RETINAL NECROSIS PRESENTING WITH MACULAR INVOLVEMENT. Retin Cases Brief Rep 2022;16(3):347-350.Abstract
PURPOSE: To report an unusual case of early macular necrosis in acute retinal necrosis and its features on multimodal imaging. METHODS: Findings on fundus examination, laboratory workup, fluorescein angiography, autofluorescence, optical coherence tomography, and optical coherence tomography angiography. RESULTS: A 31-year-old healthy woman presented with 1 week of photophobia and central scotoma of the right eye. Initial examination revealed vitritis, hyperemia of the optic disc, and a yellow-white macular lesion without any peripheral findings. Peripheral involvement was first noted only 4 days later. The patient was diagnosed with acute retinal necrosis secondary to varicella zoster virus and was successfully treated with intravitreal and oral antiviral medications. Optical coherence tomography imaging of the macular lesion showed involvement of both the inner and outer retina. Optical coherence tomography angiography revealed a large flow void in the choriocapillaris, which has not been previously demonstrated. CONCLUSION: Multimodal imaging offers valuable information in the evaluation of patients with acute retinal necrosis.
Wang M, Garg I, Miller JB. Wide Field Swept Source Optical Coherence Tomography Angiography for the Evaluation of Proliferative Diabetic Retinopathy and Associated Lesions: A Review. Semin Ophthalmol 2021;36(4):162-167.Abstract
Retinal imaging remains the mainstay for monitoring and grading diabetic retinopathy. The gold standard for detecting proliferative diabetic retinopathy (PDR) requiring treatment has long been the seven-field stereoscopic fundus photography and fluorescein angiography. In the past decade, ultra-wide field fluorescein angiography (UWF-FA) has become more commonly used in clinical practice for the evaluation of more advanced diabetic retinopathy. Since its invention, optical coherence tomography (OCT) has been an important tool for the assessment of diabetic macular edema; however, OCT offered little in the assessment of neovascular changes associated with PDR until OCT-A became available. More recently, swept source OCT allowed larger field of view scans to assess a variety of DR lesions with wide field swept source optical coherence tomography (WF-SS-OCTA). This paper reviews the role of WF-SS-OCTA in detecting neovascularization of the disc (NVD), and elsewhere (NVE), microaneurysms, changes of the foveal avascular zone (FAZ), intraretinal microvascular abnormalities (IRMA), and capillary non-perfusion, as well as limitations of this evolving technology.
Wen G, Aizenman A, Drew T, Wolfe JM, Haygood TM, Markey MK. Computational assessment of visual search strategies in volumetric medical images. J Med Imaging (Bellingham) 2016;3(1):015501.Abstract

When searching through volumetric images [e.g., computed tomography (CT)], radiologists appear to use two different search strategies: "drilling" (restrict eye movements to a small region of the image while quickly scrolling through slices), or "scanning" (search over large areas at a given depth before moving on to the next slice). To computationally identify the type of image information that is used in these two strategies, 23 naïve observers were instructed with either "drilling" or "scanning" when searching for target T's in 20 volumes of faux lung CTs. We computed saliency maps using both classical two-dimensional (2-D) saliency, and a three-dimensional (3-D) dynamic saliency that captures the characteristics of scrolling through slices. Comparing observers' gaze distributions with the saliency maps showed that search strategy alters the type of saliency that attracts fixations. Drillers' fixations aligned better with dynamic saliency and scanners with 2-D saliency. The computed saliency was greater for detected targets than for missed targets. Similar results were observed in data from 19 radiologists who searched five stacks of clinical chest CTs for lung nodules. Dynamic saliency may be superior to the 2-D saliency for detecting targets embedded in volumetric images, and thus "drilling" may be more efficient than "scanning."

Werner AC, Shen LQ. A Review of OCT Angiography in Glaucoma. Semin Ophthalmol 2019;:1-8.Abstract
There is growing evidence that vascular dysfunction plays a role in the pathogenesis of glaucoma. The details of this relationship have remained elusive partially due to limitations in our ability to assess blood flow in the optic nerve. Optical coherence tomography angiography (OCTA) has emerged as a promising new technology well positioned to become the first clinically suitable test of optic nerve perfusion. OCTA uses the motion of red blood cells as an intrinsic contrast agent to create reproducible images of microvascular networks rapidly and non-invasively. A significant body of research regarding the use of OCTA in glaucoma has emerged in recent years. This review aims to provide an overview of the basic principles underlying OCTA technology, summarize the current literature regarding the application of OCTA in the management of glaucoma, and address the role of OCTA in explicating the vascular pathogenesis of glaucoma.
Y
Yamaguchi M, Nakao S, Kaizu Y, Kobayashi Y, Nakama T, Arima M, Yoshida S, Oshima Y, Takeda A, Ikeda Y, Mukai S, Ishibashi T, Sonoda K-H. High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates. Sci Rep 2016;6:33574.Abstract

Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases.

Z
Zekavat SM, Sekimitsu S, Ye Y, Raghu V, Zhao H, Elze T, Segrè AV, Wiggs JL, Natarajan P, Del Priore L, Zebardast N, Wang JC. Photoreceptor Layer Thinning Is an Early Biomarker for Age-Related Macular Degeneration: Epidemiologic and Genetic Evidence from UK Biobank OCT Data. Ophthalmology 2022;129(6):694-707.Abstract
PURPOSE: Despite widespread use of OCT, an early-stage imaging biomarker for age-related macular degeneration (AMD) has not been identified. Pathophysiologically, the timing of drusen accumulation in relationship to photoreceptor degeneration in AMD remains unclear, as are the inherited genetic variants contributing to these processes. Herein, we jointly analyzed OCT, electronic health record data, and genomic data to characterize the time sequence of changes in retinal layer thicknesses in AMD, as well as epidemiologic and genetic associations between retinal layer thicknesses and AMD. DESIGN: Cohort study. PARTICIPANTS: Forty-four thousand eight hundred twenty-three individuals from the UK Biobank (enrollment age range, 40-70 years; 54% women; median follow-up, 10 years). METHODS: The Topcon Advanced Boundary Segmentation algorithm was used for retinal layer segmentation. We associated 9 retinal layer thicknesses with prevalent AMD (present at enrollment) in a logistic regression model and with incident AMD (diagnosed after enrollment) in a Cox proportional hazards model. Next, we associated AMD-associated genetic alleles, individually and as a polygenic risk score (PRS), with retinal layer thicknesses. All analyses were adjusted for age, age-squared (age2), sex, smoking status, and principal components of ancestry. MAIN OUTCOME MEASURES: Prevalent and incident AMD. RESULTS: Photoreceptor segment (PS) thinning was observed throughout the lifespan of individuals analyzed, whereas retinal pigment epithelium (RPE) and Bruch's membrane (BM) complex thickening started after 57 years of age. Each standard deviation (SD) of PS thinning and RPE-BM complex thickening was associated with incident AMD (PS: hazard ratio [HR], 1.35; 95% confidence interval [CI], 1.23-1.47; P = 3.7 × 10-11; RPE-BM complex: HR, 1.14; 95% CI, 1.06-1.22; P = 0.00024). The AMD PRS was associated with PS thinning (β, -0.21 SD per twofold genetically increased risk of AMD; 95% CI, -0.23 to -0.19; P = 2.8 × 10-74), and its association with RPE-BM complex was U-shaped (thinning with AMD PRS less than the 92nd percentile and thickening with AMD PRS more than the 92nd percentile). The loci with strongest support for genetic correlation were AMD risk-raising variants Complement Factor H (CFH):rs570618-T, CFH:rs10922109-C, and Age-Related Maculopathy Susceptibility 2 (ARMS2)/High-Temperature Requirement Serine Protease 1 (HTRA1):rs3750846-C on PS thinning and SYN3/Tissue Inhibitor of Metalloprotease 3 (TIMP3):rs5754227-T on RPE-BM complex thickening. CONCLUSIONS: Epidemiologically, PS thinning precedes RPE-BM complex thickening by decades and is the retinal layer most strongly predictive of future AMD risk. Genetically, AMD risk variants are associated with decreased PS thickness. Overall, these findings support PS thinning as an early-stage biomarker for future AMD development.

Pages