Cornea

Bitar MS, Liu C, Ziaei A, Chen Y, Schmedt T, Jurkunas UV. Decline in DJ-1 and decreased nuclear translocation of Nrf2 in Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 2012;53(9):5806-13.Abstract
PURPOSE: This study sought to determine factors involved in nuclear factor erythroid 2-related factor 2 (Nrf2) regulation and their response to oxidative stress in Fuchs endothelial corneal dystrophy (FECD) and normal corneal endothelial cells (CECs). METHODS: FECD corneal buttons were obtained from transplantations and normal human corneas from tissue banks. Oxidative stress was induced by tert-butyl hydroperoxide (tBHP). Protein and mRNA levels of Nrf2, DJ-1, p53, and Kelch-like ECH-associated protein1 (Keap1) were investigated using Western blotting and real-time PCR. Immunoprecipitation was used to detect levels of oxidized DJ-1 protein and Cullin 3- (Cul3)-regulated degradation of DJ-1 in immortalized FECD (FECDi) and normal CEC (HCECi) cell lines. Nrf2 subcellular localization was assessed by immunocytochemistry. RESULTS: Nrf2 protein stabilizer, DJ-1, decreased significantly in FECD CECs compared with normal, whereas Nrf2 protein repressor, Keap1, was unchanged at baseline but increased under oxidative stress. Under oxidative stress, normal CECs upregulated DJ-1 protein synthesis, whereas FECD CECs did not. DJ-1 decline correlated with increased DJ-1 oxidative modification and carbonylation in FECDi as compared with HCECi. Increased labeling of immunoprecipitated DJ-1 protein with anti-Cul3 antibody indicated enhanced DJ-1 degradation in FECDi as compared with HCECi. Following tBHP treatment, Nrf2 translocated from cytoplasm to nuclei in normal CECs, whereas Nrf2 nuclear localization was not observed in FECD. CONCLUSIONS: Decreased levels of DJ-1 in FECD at baseline and under oxidative stress correlate with impaired Nrf2 nuclear translocation and heightened cell susceptibility to apoptosis. Targeting the DJ-1/Nrf2 axis could yield a mechanism to slow CEC degeneration in FECD.
Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res 2012;95(1):16-23.Abstract
The corneal endothelial monolayer helps maintain corneal transparency through its barrier and ionic "pump" functions. This transparency function can become compromised, resulting in a critical loss in endothelial cell density (ECD), corneal edema, bullous keratopathy, and loss of visual acuity. Although penetrating keratoplasty and various forms of endothelial keratoplasty are capable of restoring corneal clarity, they can also have complications requiring re-grafting or other treatments. With the increasing worldwide shortage of donor corneas to be used for keratoplasty, there is a greater need to find new therapies to restore corneal clarity that is lost due to endothelial dysfunction. As a result, researchers have been exploring alternative approaches that could result in the in vivo induction of transient corneal endothelial cell division or the in vitro expansion of healthy endothelial cells for corneal bioengineering as treatments to increase ECD and restore visual acuity. This review presents current information regarding the ability of human corneal endothelial cells (HCEC) to divide as a basis for the development of new therapies. Information will be presented on the positive and negative regulation of the cell cycle as background for the studies to be discussed. Results of studies exploring the proliferative capacity of HCEC will be presented and specific conditions that affect the ability of HCEC to divide will be discussed. Methods that have been tested to induce transient proliferation of HCEC will also be presented. This review will discuss the effect of donor age and endothelial topography on relative proliferative capacity of HCEC, as well as explore the role of nuclear oxidative DNA damage in decreasing the relative proliferative capacity of HCEC. Finally, potential new research directions will be discussed that could take advantage of and/or improve the proliferative capacity of these physiologically important cells in order to develop new treatments to restore corneal clarity.
Ding J, Sullivan DA. Aging and dry eye disease. Exp Gerontol 2012;47(7):483-90.Abstract
Dry eye disease is a prevalent eye disorder that in particular affects the elderly population. One of the major causes of dry eye, meibomian gland dysfunction (MGD), shows increased prevalence with aging. MGD is caused by hyperkeratinization of the ductal epithelium of meibomian gland and reduced quantity and/or quality of meibum, the holocrine product that stabilizes and prevents the evaporation of the tear film. Of note, retinoids which are used in current anti-aging cosmetics may promote the development of MGD and dry eye disease. In this review, we will discuss the possible mechanisms of age-related MGD.
Shazly TA, Latina MA, Dagianis JJ, Chitturi S. Effect of central corneal thickness on the long-term outcome of selective laser trabeculoplasty as primary treatment for ocular hypertension and primary open-angle glaucoma. Cornea 2012;31(8):883-6.Abstract
PURPOSE: To determine if central corneal thickness (CCT) impacts the intraocular pressure (IOP)-lowering effect of selective laser trabeculoplasty (SLT) in patients with ocular hypertension (OHT) and primary open-angle glaucoma (POAG). METHODS: A retrospective chart review of consecutive patients, who underwent SLT as primary treatment for OHT and POAG, between 2002 and 2005, was performed. Partial correlation analysis was performed to correlate the CCT to the percentage of IOP reduction at 3 to 30 months after SLT. Independent samples t test was performed to compare mean percentage of IOP reduction in eyes with CCT less than 555 μm versus CCT 555 μm or greater. RESULTS: Eighty eyes of 47 patients were identified. The partial correlation coefficient value between the CCT and percentage of IOP reduction after SLT at 3 months was -0.253 (P = 0.025), at 12 months it was -0.22 (P = 0.049), and at 30 months it was 0.301 (P = 0.007). Independent samples t test showed that the mean percentage of IOP reduction in eyes with thinner corneas (CCT < 555 μm) was greater than that in thicker corneas (CCT ≥ 555 μm) at 3-, 6-, 9-, 12-, and 30-month post-SLT (P < 0.05). CONCLUSIONS: In patients with POAG and OHT, percentage of IOP reduction after SLT was significantly greater in eyes with thinner corneas (CCT < 555 μm). These findings indicate that patients treated with SLT as primary therapy who had thinner corneas demonstrated better IOP control for at least 30 months after SLT.
Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol 2012;130(1):90-100.Abstract
Dry eye disease is a multifactorial disorder of the tears and ocular surface characterized by symptoms of dryness and irritation. Although the pathogenesis of dry eye disease is not fully understood, it is recognized that inflammation has a prominent role in the development and propagation of this debilitating condition. Factors that adversely affect tear film stability and osmolarity can induce ocular surface damage and initiate an inflammatory cascade that generates innate and adaptive immune responses. These immunoinflammatory responses lead to further ocular surface damage and the development of a self-perpetuating inflammatory cycle. Herein, we review the fundamental links between inflammation and dry eye disease and discuss the clinical implications of inflammation in disease management.
Shatos MA, Haugaard-Kedstrom L, Hodges RR, Dartt DA. Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland. Invest Ophthalmol Vis Sci 2012;53(6):2749-59.Abstract
PURPOSE: The purpose of this study was to investigate the presence of progenitor cells in the uninjured, adult rat lacrimal gland (LG). METHODS: The presence of progenitor cells was examined in LG sections from male rats using antibodies against selected stem cell markers and α-smooth muscle actin (SMA), which marks myoepithelial cells (MECs), by immunofluorescence microscopy (IF). Small, immature cells were isolated after digestion of LG with collagenase and culture in RPMI 1640 for 2 weeks. Immature cells were examined for expression of stem cell markers by IF. Immature cell were grown in neuronal, epithelial, and myoepithelial cell media, and examined by light morphology and IF using antibodies to markers of different cell lineages. RESULTS: In the intact LGs, MECs expressed the stem cell markers nestin, Musashi 1, ABCG2, Pax6, Chx 10, ΔN p63, and Sox 2. All markers colocalized with SMA. Isolated immature cells contained Ki-67, nestin, Musashi 1, Pax 6, and CHX 10. In neuronal media, immature cells differentiated and assumed a neuronal cell morphology expressing neurofilament 200. In media for human corneal endothelial cells, immature cells differentiated, assumed cobblestone morphology, and labeled with the epithelial marker AE1/AE3. In RPMI media immature cells differentiated into cells with MEC-like morphology, and expressed the MEC markers SMA, α-actinin, adenylate cyclase II, and vimentin. CONCLUSIONS: We conclude that uninjured, adult LG contains progenitor cells that may be MECs, which can be isolated and differentiated into multiple lineages.
Shukla AN, Cruzat A, Hamrah P. Confocal microscopy of corneal dystrophies. Semin Ophthalmol 2012;27(5-6):107-16.Abstract
In vivo confocal microscopy (IVCM) of the cornea is becoming an indispensable tool in the cellular study of corneal physiology and disease. This technique offers non-invasive imaging of the living cornea with images comparable to that of ex vivo histology. The ability to provide high-resolution images of all layers in the living cornea has resulted in new discoveries of corneal pathology at the cellular level. The IVCM analysis of corneal dystrophies is of importance to clinicians, as current methods of diagnosis involve slit-lamp characteristics, genetic analysis, and invasive biopsy. IVCM is helpful in evaluating the morphological characteristics of corneal dystrophies at the histological level and may be helpful in diagnosis, determination of progression, and understanding the pathophysiology of disease. The purpose of this review is to describe the principles, applications, and clinical correlation of IVCM in the study of corneal dystrophies.
Sullivan DA, Hammitt KM, Schaumberg DA, Sullivan BD, Begley CG, Gjorstrup P, Garrigue J-S, Nakamura M, Quentric Y, Barabino S, Dalton M, Novack GD. Report of the TFOS/ARVO Symposium on global treatments for dry eye disease: an unmet need. Ocul Surf 2012;10(2):108-16.Abstract
In September 2010, a Symposium in Florence, Italy, was held to address the unmet need for global treatments for dry eye disease (DED). It was sponsored by The Tear Film & Ocular Surface Society (TFOS; www.TearFilm.org) and co-sponsored by the Association for Research in Vision & Ophthalmology (www.arvo.org). The Symposium objectives were two-fold: first, to discuss accepted and emerging clinical endpoints of DED with regulatory experts from around the world; and second, to consider how to improve clinical trials of treatments for DED. The Symposium focused on the personal and collective burden of DED, as well as the developmental and regulatory challenges associated with generating new DED therapeutics. This article provides a synopsis of many of the presentations, discussions and recommendations of this Symposium.
Sahin A, Hamrah P. Clinically relevant biometry. Curr Opin Ophthalmol 2012;23(1):47-53.Abstract
PURPOSE OF REVIEW: Obtaining precise postoperative target refraction is of utmost importance in today's modern cataract and refractive surgery. Given the growing number of patients undergoing premium intraocular lens (IOL) implantations, patient expectation continues to rise. In order to meet heightened patient expectations, it is crucial to pay utmost attention to patient selection, accurate keratometry and biometry readings, as well as to the application of correct IOL power formula with optimized lens constants. This article reviews recent advances in the field of clinical biometry and IOL power calculations. RECENT FINDINGS: Recently developed low-coherence reflectometry optical biometry is comparable to older ultrasonic biometric and keratometric techniques. In addition, the new IOLMaster software upgrade has improved reproducibility and enhanced signal acquisition. Further, the modern lens power formulas currently determine the effective lens position and the shape of the intraocular lens power prediction curve more accurately. SUMMARY: In order to reach target refraction, precise biometric measurements are imperative. Understanding the strengths and limitations of the currently available biometry devices allows prevention of high variability and inaccuracy, ultimately determining the refractive outcomes.
Sayegh RR, Pineda R. Practical applications of anterior segment optical coherence tomography imaging following corneal surgery. Semin Ophthalmol 2012;27(5-6):125-32.Abstract
Anterior segment optical coherence tomography (AS-OCT) has recently emerged as an important modality for imaging of the cornea. Since its introduction less than a decade ago, it has been clinically used for the diagnosis and management of an expanding number of corneal conditions. In this review, we will discuss the applications of anterior segment optical coherence tomography after corneal surgery, focusing on penetrating and lamellar keratoplasty, keratoprosthesis, intracorneal ring segments, collagen cross-linking and refractive surgery. Anterior segment optical coherence tomography is useful in evaluating outcomes, detecting adverse events, determining prognosis, guiding management decisions, and surgical planning.
Kurbanyan K, Hoesl LM, Schrems WA, Hamrah P. Corneal nerve alterations in acute Acanthamoeba and fungal keratitis: an in vivo confocal microscopy study. Eye (Lond) 2012;26(1):126-32.Abstract
PURPOSE: To study sub-basal corneal nerve alterations in patients with acute Acanthamoeba keratitis (AK) and fungal keratitis (FK), using laser in vivo confocal microscopy (IVCM). METHODS: A retrospective analysis of IVCM (Heidelberg Retina Tomograph 3/Rostock Cornea Module) images of 10 AK corneas and 4 FK corneas was performed, and the results compared with those of 10 normal and 12 acute herpetic keratitis (HK) corneas. Sub-basal corneal nerves were analyzed with respect to total number of nerves, main nerve trunks, branching pattern and total length of nerves per image, as well as tortuosity. For each variable, results for three frames were averaged and analyzed using analysis of variance. RESULTS: Total corneal nerve length was significantly (P < 0.0001) reduced in patients with AK (193.4 ± 124.5 μm) and FK (268.6 ± 257.4 μm) when compared with normal controls (3811.84 ± 911.4 μm). Total nerve counts in patients with AK (3.9 ± 1.2) and FK (3.6 ± 3.2) were significantly (P < 0.0001) decreased in comparison with normal controls (24.7 ± 5.5). The number of main nerve trunks and nerve branching was found to be significantly lower in AK and FK corneas, when compared with controls. There was a statistically significant decrease in the above parameters when compared with HK controls. CONCLUSIONS: The sub-basal corneal nerve plexus is significantly diminished in eyes with AK and FK, as demonstrated by IVCM. These results are more profound than previously reported findings of a diminished nerve plexus in HK.
Li D, Carozza RB, Shatos MA, Hodges RR, Dartt DA. Effect of histamine on Ca(2+)-dependent signaling pathways in rat conjunctival goblet cells. Invest Ophthalmol Vis Sci 2012;53(11):6928-38.Abstract
PURPOSE: The purpose of this study was to determine the Ca(2+)-dependent cellular signaling pathways used by histamine to stimulate conjunctival goblet cell secretion. METHODS: Cultured rat goblet cells were grown in RPMI 1640. Goblet cell secretion of high molecular weight glycoconjugates was measured by an enzyme-linked lectin assay. Intracellular [Ca(2+)] ([Ca(2+)](i)) was measured by loading cultured cells with the Ca(2+) sensitive dye fura-2. The level of [Ca(2+)](i) was measured using fluorescence microscopy. Extracellular regulated kinase (ERK) 2 was depleted using small interfering RNA (siRNA). RESULTS: Histamine-stimulated conjunctival goblet cell secretion of high molecular weight glycoproteins was blocked by removal of extracellular Ca(2+) and depletion of ERK2 by siRNA. Histamine increase in [Ca(2+)](i) was desensitized by repeated addition of agonist and blocked by a phospholipase C antagonist. Histamine at higher doses increased [Ca(2+)](i) by stimulating influx of extracellular Ca(2+), but at a lower dose released Ca(2+) from intracellular stores. Activation of each histamine receptor subtype (H(1)-H(4)) increased [Ca(2+)](i) and histamine stimulation was blocked by antagonists of each receptor subtype. The H(2) receptor subtype increase in [Ca(2+)](i) was cAMP dependent. CONCLUSIONS: We conclude that histamine activates phospholipase C to release intracellular Ca(2+) that induces the influx of extracellular Ca(2+) and activates ERK1/2 to stimulate conjunctival goblet cell mucous secretion, and that activation of all four histamine receptor subtypes can increase [Ca(2+)](i).
Sahin A, Hamrah P. Acute Herpetic Keratitis: What is the Role for Ganciclovir Ophthalmic Gel?. Ophthalmol Eye Dis 2012;4:23-34.Abstract
Herpes simplex keratitis (HSK) is a major cause of corneal blindness in the world. Following the primary infection, the virus enters into a latent phase. Recurrent infectious or immune keratitis cause structural damage to the cornea, scarring, and may lead to blindness. Several commercially available topical and oral antiviral drugs for HSK are currently available. However, toxicity and low patient compliance hamper their use in HSK. Further, oral antiviral drugs alone are not always effective in HSK. Thus, there had been a need for safe and effective topical antiviral agents against HSK. Systemic ganciclovir has been in use for the treatment of cytomegalovirus infections. Recently, topical ganciclovir has become available for use in patients with HSK. Ganciclovir 0.15% ophthalmic gel has been shown to be both safe and effective against viruses of the herpes family. Topical ganciclovir ophthalmic gel is well tolerated and does not cause significant toxic effects on the ocular surface. Several multicenter studies have revealed the potential role of ganciclovir ophthalmic gel in the treatment and prophylaxis of epithelial HSK. In this paper, we have reviewed the pharmacology, efficacy, side effects, and the role of ganciclovir ophthalmic gel 0.15% in the treatment of acute herpetic keratitis.
Kumar R, Dohlman CH, Chodosh J. Oral acetazolamide after Boston keratoprosthesis in Stevens-Johnson syndrome. BMC Res Notes 2012;5:205.Abstract
BACKGROUND: Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is a rare but severe and sometimes fatal condition associated with exposure to medications; sulfamethoxazole is among the most common causes. We sought to address the safety of acetazolamide, a chemically related compound, in patients with prior SJS/TEN and glaucoma. A retrospective case series is described of patients at the Massachusetts Eye and Ear Infirmary who underwent keratoprosthesis surgery for corneal blindness from SJS/TEN, and later required oral acetazolamide for elevated intraocular pressure. FINDINGS: Over the last 10 years, 17 patients with SJS/TEN received a Boston keratoprosthesis. Of these, 11 developed elevated intraocular pressure that required administration of oral acetazolamide. One of 11 developed a mild allergic reaction, but no patient experienced a recurrence of SJS/TEN or any severe adverse reaction. CONCLUSION: Although an increase in the rate of recurrent SJS/TEN due to oral acetazolamide would not necessarily be apparent after treating only 11 patients, in our series, acetazolamide administration was well tolerated without serious sequela.

Pages