Cornea

Daniel S, Renwick M, Chau VQ, Datta S, Maddineni P, Zode G, Wade EM, Robertson SP, Petroll MW, Hulleman JD. Fibulin-3 knockout mice demonstrate corneal dysfunction but maintain normal retinal integrity. J Mol Med (Berl) 2020;98(11):1639-1656.Abstract
Fibulin-3 (F3) is an extracellular matrix glycoprotein found in basement membranes across the body. An autosomal dominant R345W mutation in F3 causes a macular dystrophy resembling dry age-related macular degeneration (AMD), whereas genetic removal of wild-type (WT) F3 protects mice from sub-retinal pigment epithelium (RPE) deposit formation. These observations suggest that F3 is a protein which can regulate pathogenic sub-RPE deposit formation in the eye. Yet the precise role of WT F3 within the eye is still largely unknown. We found that F3 is expressed throughout the mouse eye (cornea, trabecular meshwork (TM) ring, neural retina, RPE/choroid, and optic nerve). We next performed a thorough structural and functional characterization of each of these tissues in WT and homozygous (F3) knockout mice. The corneal stroma in F3 mice progressively thins beginning at 2 months, and the development of corneal opacity and vascularization starts at 9 months, which worsens with age. However, in all other tissues (TM, neural retina, RPE, and optic nerve), gross structural anatomy and functionality were similar across WT and F3 mice when evaluated using SD-OCT, histological analyses, electron microscopy, scotopic electroretinogram, optokinetic response, and axonal anterograde transport. The lack of noticeable retinal abnormalities in F3 mice was confirmed in a human patient with biallelic loss-of-function mutations in F3. These data suggest that (i) F3 is important for maintaining the structural integrity of the cornea, (ii) absence of F3 does not affect the structure or function of any other ocular tissue in which it is expressed, and (iii) targeted silencing of F3 in the retina and/or RPE will likely be well-tolerated, serving as a safe therapeutic strategy for reducing sub-RPE deposit formation in disease. KEY MESSAGES: • Fibulins are expressed throughout the body at varying levels. • Fibulin-3 has a tissue-specific pattern of expression within the eye. • Lack of fibulin-3 leads to structural deformities in the cornea. • The retina and RPE remain structurally and functionally healthy in the absence of fibulin-3 in both mice and humans.
Taketani Y, Marmalidou A, Dohlman TH, Singh RB, Amouzegar A, Chauhan SK, Chen Y, Dana R. Restoration of Regulatory T-Cell Function in Dry Eye Disease by Antagonizing Substance P/Neurokinin-1 Receptor. Am J Pathol 2020;190(9):1859-1866.Abstract
Substance P (SP) is a tachykinin neuropeptide, implicated in the pathogenesis of various inflammatory conditions and a critical mediator in pain transmission. Recently, the role of SP was described in the pathogenesis of dry eye disease (DED) through its role in the maturation of antigen-presenting cells at the ocular surface after exposure to desiccating stress. However, the effect of SP on regulatory T cells (Tregs), which are functionally impaired in DED, remains unclear. This study examined the phenotypic and functional changes in Tregs in response to SP in DED. The in vitro cultures of normal Tregs in the presence of SP led to a significant reduction in both Treg frequencies and their suppressive function, which was prevented by the addition of an SP receptor (neurokinin-1 receptor) antagonist. Furthermore, in vivo treatment with the neurokinin-1 receptor antagonist in DED mice effectively restored Treg function, suppressed pathogenic T helper 17 response, and significantly ameliorated the disease. Our results show that a significant increase in SP levels promotes Treg dysfunction in DED, and blockade of SP effectively restores Treg function and suppresses DED severity.
Martinez-Carrasco R, Argüeso P, Fini EM. Dynasore protects ocular surface mucosal epithelia subjected to oxidative stress by maintaining UPR and calcium homeostasis. Free Radic Biol Med 2020;160:57-66.Abstract
The mucosal epithelia of the ocular surface protect against external threats to the eye. Using a model of human stratified corneal epithelial cells with mucosal differentiation, we previously demonstrated that a small molecule inhibitor of dynamin GTPases, dynasore, prevents damage to cells and their transcellular barriers when subjected to oxidative stress. Investigating mechanisms, we now report the novel finding that dynasore acts by maintaining Ca homeostasis, thereby inhibiting the PERK branch of the unfolded protein response (UPR) that promotes cell death. Dynasore was found to protect mitochondria by preventing mitochondrial permeability transition pore opening (mPTP), but, unlike reports using other systems, this was not mediated by dynamin family member DRP1. Necrostatin-1, an inhibitor of RIPK1 and lytic forms of programmed cell death, also inhibited mPTP opening and further protected the plasma membrane barrier. Significantly, necrostatin-1 did not protect the mucosal barrier. Oxidative stress increased mRNA for sXBP1, a marker of the IRE1 branch of the UPR, and CHOP, a marker of the PERK branch. It also stimulated phosphorylation of eIF2α, the upstream regulator of CHOP, as well as an increase in intracellular Ca. Dynasore selectively inhibited the increase in PERK branch markers, and also prevented the increase intracellular Ca in response to oxidative stress. The increase in PERK branch markers were also inhibited when cells were treated with the cell permeable Ca chelator, BAPTA-AM. To our knowledge, this is the first time that dynasore has been shown to have an effect on the UPR and suggests therapeutic applications.
Singh RB, Zhu S, Yung A, Dohlman TH, Dana R, Yin J. Efficacy of cyanoacrylate tissue adhesive in the management of corneal thinning and perforation due to microbial keratitis. Ocul Surf 2020;Abstract
PURPOSE: Report the efficacy of cyanoacrylate tissue adhesive (CTA) application in the management of corneal thinning and perforations associated with microbial keratitis. METHODS: A retrospective review of consecutive patients who underwent CTA application for corneal thinning and perforation secondary to microbiologically proven infectious keratitis between 2001 and 2018 at a single center. We defined successful CTA application as an intact globe without tectonic surgical intervention. RESULTS: The cohort included 67 patients, and 37 presented with corneal perforation while 30 had corneal thinning. The perforation/thinning was central/paracentral in 43 eyes and peripheral in 23 eyes. The underlying infectious etiologies were monomicrobial in 42 cases (35 bacterial, 3 fungal, 2 viral, and 2 acanthamoeba cases) and polymicrobial in 25 cases (22 polybacterial cases and 3 cases with a combination of Gram positive bacteria and fungus). The median duration of glue retention was 29 days. The CTA success rate was 73%, 64%, and 44% at 10, 30, and 180 days, respectively. CTA application appears more successful in monomicrobial (vs. polymicrobial) and Gram positive bacterial (vs. Gram negative) keratitis but the differences are statistically non-significant. The location of perforation/thinning and the use of topical corticosteroid were not associated with CTA failure. CONCLUSION: CTA was moderately effective in restoring globe integrity in severe corneal thinning and perforation secondary to microbial keratitis in the short term. However the majority of patients require tectonic surgical intervention within 6 months. CTA application success is not significantly associated with the location of thinning/perforation or the use of topical corticosteroid.
Bengani LC, Kobashi H, Ross AE, Zhai H, Salvador-Culla B, Tulsan R, Kolovou PE, Mittal SK, Chauhan SK, Kohane DS, Ciolino JB. Steroid-eluting contact lenses for corneal and intraocular inflammation. Acta Biomater 2020;116:149-161.Abstract
Ocular inflammation is one of the leading causes of blindness worldwide, and steroids in topical ophthalmic solutions (e.g. dexamethasone eye drops) are the mainstay of therapy for ocular inflammation. For many non-infectious ocular inflammatory diseases, such as uveitis, eye drops are administered as often as once every hour. The high frequency of administration coupled with the side effects of eye drops leads to poor adherence for patients. Drug-eluting contact lenses have long been sought as a potentially superior alternative for sustained ocular drug delivery; but loading sufficient drug into contact lenses and control the release of the drug is still a challenge. A dexamethasone releasing contact lens (Dex-Lens) was previously developed by encapsulating a dexamethasone-polymer film within the periphery of a hydrogel-based contact lens. Here, we demonstrate safety and efficacy of the Dex-Lens in rabbit models in the treatment of anterior ocular inflammation. The Dex-Lens delivered drug for 7 days in vivo (rabbit model). In an ocular irritation study (Draize test) with Dex-Lens extracts, no adverse events were observed in normal rabbit eyes. Dex-Lenses effectively inhibited suture-induced corneal neovascularization and inflammation for 7 days and lipopolysaccharide-induced anterior uveitis for 5 days. The efficacy of Dex-Lenses was similar to that of hourly-administered dexamethasone eye drops. In the corneal neovascularization study, substantial corneal edema was observed in rabbit eyes that received no treatment and those that wore a vehicle lens as compared to rabbit eyes that wore the Dex-Lens. Throughout these studies, Dex-Lenses were well tolerated and did not exhibit signs of toxicity. Dexamethasone-eluting contact lenses may be an option for the treatment of ocular inflammation and a platform for ocular drug delivery. STATEMENT OF SIGNIFICANCE: Inflammation of the eye can happen either on the ocular surface (i.e. the cornea) or inside the eye, both of which can result in loss of vision or even blindness. Ocular inflammation is normally treated by steroid eye drops. Depending on the type and severity of inflammation, patients may have to take drops every hour for days at a time. Such severe dosing regimen can lead to patients missing doses. Also, more than 95% drug in an eye drop never goes inside the eye. Here we present a contact lens that release a steroid (dexamethasone) for seven days at a time. It is much more efficient than eye drops and a significant improvement since once worn, the patient will avoid missing doses.
Kim S, Bispo PJM, Tanner EEL, Mitragotri S, E Silva RN, Gipson I, Chodosh J, Behlau I, Paschalis EI, Gilmore MS, Dohlman CH. The Search for Antifungal Prophylaxis After Artificial Corneal Surgery-An In Vitro Study. Cornea 2020;39(12):1547-1555.Abstract
PURPOSE: To evaluate the antifungal properties of topical antibiotics (already being used successfully to prevent bacterial endophthalmitis) and some promising antiseptics for antifungal prophylaxis in the setting of artificial corneal implantation. METHODS: Several commonly used antibiotics for antimicrobial prophylaxis after artificial corneal implantation, in addition to antiseptics [benzalkonium chloride (BAK), povidone-iodine (PI), and some ionic liquids (ILs)], were tested in vitro against Candida albicans, Fusarium solani, and Aspergillus fumigatus. The time-kill activity was determined. Toxicity was assayed in vitro on human corneal epithelial cultures using trypan blue. Adhesion and tissue invasion experiments were also carried out on porcine corneas and commonly used contact lenses, with or without gamma irradiation, and by analysis with fluorescence microscopy. RESULTS: Polymyxin B (PMB)/trimethoprim/BAK (Polytrim), PMB alone, gatifloxacin with BAK (Zymaxid), and same-concentration BAK alone exhibited antifungal activity in vitro. Moxifloxacin (MOX) or gatifloxacin without BAK-as well as trimethoprim, vancomycin, and chloramphenicol-had no effect. 1% PI and ILs had the highest efficacy/toxicity ratios (>1), and Polytrim was species dependent. Subfungicidal concentrations of Polytrim reduced adhesion of C. albicans to Kontur contact lenses. Gamma-irradiated corneas showed enhanced resistance to fungal invasion. CONCLUSIONS: Of antibiotic preparations already in use for bacterial prophylaxis after KPro surgery, Polytrim is a commonly used antibiotic with antifungal effects mediated by both PMB and BAK and may be sufficient for prophylaxis. PI as a 1% solution seems to be promising as a long-term antifungal agent. Choline-undecanoate IL is effective and virtually nontoxic and warrants further development.
Khalil IA, Saleh B, Ibrahim DM, Jumelle C, Yung A, Dana R, Annabi N. Ciprofloxacin-loaded bioadhesive hydrogels for ocular applications. Biomater Sci 2020;8(18):5196-5209.Abstract
The management of corneal infections often requires complex therapeutic regimens involving the prolonged and high-frequency application of antibiotics that provide many challenges to patients and impact compliance with the therapeutic regimens. In the context of severe injuries that lead to tissue defects (e.g. corneal lacerations) topical drug regimens are inadequate and suturing is often indicated. There is thus an unmet need for interventions that can provide tissue closure while concurrently preventing or treating infection. In this study, we describe the development of an antibacterial bioadhesive hydrogel loaded with micelles containing ciprofloxacin (CPX) for the management of corneal injuries at risk of infection. The in vitro release profile showed that the hydrogel system can release CPX, a broad-spectrum antibacterial drug, for up to 24 h. Moreover, the developed CPX-loaded hydrogels exhibited excellent antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa, two bacterial strains responsible for the most ocular infections. Physical characterization, as well as adhesion and cytocompatibility tests, were performed to assess the effect of CPX loading in the developed hydrogel. Results showed that CPX loading did not affect stiffness, adhesive properties, or cytocompatibility of hydrogels. The efficiency of the antibacterial hydrogel was assessed using an ex vivo model of infectious pig corneal injury. Corneal tissues treated with the antibacterial hydrogel showed a significant decrease in bacterial colony-forming units (CFU) and a higher corneal epithelial viability after 24 h as compared to non-treated corneas and corneas treated with hydrogel without CPX. These results suggest that the developed adhesive hydrogel system presents a promising suture-free solution to seal corneal wounds while preventing infection.
Lee JS, Mukherjee S, Lee JY, Saha A, Chodosh J, Painter DF, Rajaiya J. Entry of Epidemic Keratoconjunctivitis-Associated Human Adenovirus Type 37 in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020;61(10):50.Abstract
Purpose: Ocular infection by human adenovirus species D type 37 (HAdV-D37) causes epidemic keratoconjunctivitis, a severe, hyperacute condition. The corneal component of epidemic keratoconjunctivitis begins upon infection of corneal epithelium, and the mechanism of viral entry dictates subsequent proinflammatory gene expression. Therefore, it is important to understand the specific pathways of adenoviral entry in these cells. Methods: Transmission electron microscopy of primary and tert-immortalized human corneal epithelial cells infected with HAdV-D37 was performed to identify the means of viral entry. Confocal microscopy was used to determine intracellular trafficking. The results of targeted small interfering RNA and specific chemical inhibitors were analyzed by quantitative PCR, and Western blot. Results: By transmission electron microscopy, HAdV-D37 was seen to enter by both clathrin-coated pits and macropinocytosis; however, entry was both pH and dynamin 2 independent. Small interfering RNA against clathrin, AP2A1, and lysosome-associated membrane protein 1, but not early endosome antigen 1, decreased early viral gene expression. Ethyl-isopropyl amiloride, which blocks micropinocytosis, did not affect HAdV-D37 entry, but IPA, an inhibitor of p21-activated kinase, and important to actin polymerization, decreased viral entry in a dose-dependent manner. Conclusions: HAdV-D37 enters human corneal epithelial cells by a noncanonical clathrin-mediated pathway involving lysosome-associated membrane protein 1 and PAK1, independent of pH, dynamin, and early endosome antigen 1. We showed earlier that HAdV-D37 enters human keratocytes through caveolae. Therefore, epidemic keratoconjunctivitis-associated viruses enter different corneal cell types via disparate pathways, which could account for a relative paucity of proinflammatory gene expression upon infection of corneal epithelial cells compared with keratocytes, as seen in prior studies.
McKay TB, Hutcheon AEK, Guo X, Zieske JD, Karamichos D. Modeling the cornea in 3-dimensions: Current and future perspectives. Exp Eye Res 2020;197:108127.Abstract
The cornea is an avascular, transparent ocular tissue that serves as a refractive and protective structure for the eye. Over 90% of the cornea is composed of a collagenous-rich extracellular matrix within the stroma with the other 10% composed by the corneal epithelium and endothelium layers and their corresponding supporting collagen layers (e.g., Bowman's and Descemet's membranes) at the anterior and posterior cornea, respectively. Due to its prominent role in corneal structure, tissue engineering approaches to model the human cornea in vitro have focused heavily on the cellular and functional properties of the corneal stroma. In this review, we discuss model development in the context of culture dimensionality (e.g., 2-dimensional versus 3-dimensional) and expand on the optical, biomechanical, and cellular functions promoted by the culture microenvironment. We describe current methods to model the human cornea with focus on organotypic approaches, compressed collagen, bioprinting, and self-assembled stromal models. We also expand on co-culture applications with the inclusion of relevant corneal cell types, such as epithelial, stromal keratocyte or fibroblast, endothelial, and neuronal cells. Further advancements in corneal tissue model development will markedly improve our current understanding of corneal wound healing and regeneration.
Hernandez-Llamas S, Paz-Ramos AK, Marcos-Gonzalez P, Amparo F, Garza-Leon M. Symptoms of ocular surface disease in construction workers: comparative study with office workers. BMC Ophthalmol 2020;20(1):272.Abstract
BACKGROUND: To investigate and contrast the prevalence of dry eye symptoms in construction workers and office workers using the OSDI questionnaire. METHODS: A cross-sectional, observational study was conducted using the OSDI questionnaire to evaluate dry eye symptoms and associated risk factors. Sampled size calculation with a power of 80% and a 95% degree of confidence suggested the inclusion of 298 participants. RESULTS: We studied 304 subjects (149 construction workers and 155 office workers). More than half (55%) of the participants presented dry eye symptoms (OSDI > 12). The average OSDI score was 21.30 ± 22.20 points, being lower in the group of construction workers (12.45 ± 17.50) than in-office workers (28.51 ± 22.99) (p <  0.001). Considering participants who had moderate and severe symptoms (23 to 100 points in OSDI), office workers presented dry eye symptoms 4.15 times more frequently than construction workers (OR 4.15, 95% CI 2.52, 6.85). Women presented statistical evidence of higher OSDI scores than men (32.47 ± 23.72 vs. 14.87 ± 18.48, respectively). CONCLUSIONS: construction workers have four times less risk of presenting dry eye symptoms than people working in the average office space. This highlights the pernicious effects on the ocular surface of the office environment, which poses a significant risk for the development or worsening of dry eye symptoms.
Deng SX, Kruse F, Gomes JAP, Chan CC, Daya S, Dana R, Figueiredo FC, Kinoshita S, Rama P, Sangwan V, Slomovic AR, Tan D, and Group TILSCDW. Global Consensus on the Management of Limbal Stem Cell Deficiency. Cornea 2020;39(10):1291-1302.Abstract
PURPOSE: In recent decades, the medical and surgical treatment of limbal stem cell deficiency (LSCD) has evolved significantly through the incorporation of innovative pharmacological strategies, surgical techniques, bioengineering, and cell therapy. With such a wide variety of options, there is a need to establish a global consensus on the preferred approaches for the medical and surgical treatment of LSCD. METHODS: An international LSCD Working Group was established by the Cornea Society in 2012 and divided into subcommittees. Four face-to-face meetings, frequent email discussions, and teleconferences were conducted since then to reach agreement on a strategic plan and methods after a comprehensive literature search. A writing group drafted the current study. RESULTS: A consensus in the medical and surgical management of LSCD was reached by the Working Group. Optimization of the ocular surface by eyelid and conjunctival reconstruction, antiinflammatory therapy, dry eye and meibomian gland dysfunction treatment, minimization of ocular surface toxicity from medications, topical medications that promote epithelialization, and use of a scleral lens is considered essential before surgical treatment of LSCD. Depending on the laterality, cause, and stage of LSCD, surgical strategies including conjunctival epitheliectomy, amniotic membrane transplantation, transplantation of limbal stem cells using different techniques and sources (allogeneic vs. autologous vs. ex vivo-cultivated), transplantation of oral mucosal epithelium, and keratoprosthesis can be performed as treatment. A stepwise flowchart for use in treatment decision-making was established. CONCLUSIONS: This global consensus provides an up-to-date and comprehensive framework for the management of LSCD.
McKay TB, Schlötzer-Schrehardt U, Pal-Ghosh S, Stepp MA. Integrin: Basement membrane adhesion by corneal epithelial and endothelial cells. Exp Eye Res 2020;:108138.Abstract
Integrins mediate adhesion of cells to substrates and maintain tissue integrity by facilitating mechanotransduction between cells, the extracellular matrix, and gene expression in the nucleus. Changes in integrin expression in corneal epithelial cells and corneal endothelial cells impacts their adhesion to the epithelial basement membrane (EpBM) and Descemet's membrane, respectively. Integrins also play roles in assembly of basement membranes by both activating TGFβ1 and other growth factors. Over the past two decades, this knowledge has been translated into methods to grow corneal epithelial and endothelial cells in vitro for transplantation in the clinic thereby transforming clinical practice and quality of life for patients. Current knowledge on the expression and function of the integrins that mediate adhesion to the basement membrane expressed by corneal epithelial and endothelial cells in health and disease is summarized. This is the first review to discuss similarities and differences in the integrins expressed by both cell types.
Sinha S, Singh RB, Dohlman TH, Wang M, Taketani Y, Yin J, Dana R. Prevalence of Persistent Corneal Epithelial Defects in Chronic Ocular Graft-Versus-Host Disease. Am J Ophthalmol 2020;218:296-303.Abstract
PURPOSE: To establish the prevalence, clinical characteristics, and risk factors for persistent corneal epithelial defects (PED) in patients with chronic ocular graft-versus-host disease (oGVHD) and to determine visual outcomes after healing. DESIGN: Retrospective cohort study. METHODS: A chart review was conducted of patients in whom chronic oGVHD was diagnosed between January 2011 and December 2018 and their demographic and clinical characteristics were collected. Data were analyzed to determine prevalence of PED, and multivariate logistic regression was performed to determine the risk factors associated with it. RESULTS: A total of 405 patients at a mean age of 60 ± 13 years in whom chronic oGVHD was diagnosed; 58% were men. The prevalence of PED was 8.1%. The median time for PED development after hematopoietic stem cell transplantation was approximately 24 months. Median time to PED resolution was 4.5 weeks after starting therapy. The mean best-corrected visual acuity declined by 2 lines post-PED resolution. The prevalence rates of corneal ulcer and perforation were 6.2% and 4.0%, respectively, over 8 years. Logistic regression analysis, used to determine factors associated with PED, showed diabetes (P = .006), limbal stem cell deficiency (LSCD) (P = .02), filamentary keratitis (P = .02), subconjunctival fibrosis (P = .02), and a higher National Institutes of Health (NIH) oGVHD score (P = .01) were significant risk factors for PED development. CONCLUSIONS: The study found the prevalence rate of PED, corneal ulceration, and corneal perforation in chronic oGVHD to be 8.1%, 6.2%, and 4%, respectively. Analysis showed that oGVHD patients with diabetes, LSCD, filamentary keratitis, subconjunctival fibrosis, and a high NIH score were at higher risk of developing severe corneal disease.

Pages