Cornea

Yong JJ, Hatch KM. Corneal Cross-Linking: An Effective Treatment Option for Pellucid Marginal Degeneration. Semin Ophthalmol 2019;:1-6.Abstract
: This is the first review article examining literature specific to the use of corneal cross-linking (CXL) to treat pellucid marginal degeneration (PMD). : CXL appears to be an effective treatment that may halt the progression of PMD to stabilize vision. This could postpone or eliminate the need for corneal transplantation in the management of these patients. Furthermore, combining CXL with keratorefractive surgery in a single procedure has been shown to be safe and successful in improving vision in PMD patients. : The data reported in literature is limited at this time, consisting mostly of retrospective studies with short term follow up. Further research is needed to evaluate refractive effects of combined CXL and excimer laser procedures.
Islam MM, Sharifi R, Mamodaly S, Islam R, Nahra D, AbuSamra DB, Hui PC, Adibnia Y, Goulamaly M, Paschalis EI, Cruzat A, Kong J, Nilsson PH, Argüeso P, Mollnes TE, Chodosh J, Dohlman CH, Gonzalez-Andrades M. Effects of gamma radiation sterilization on the structural and biological properties of decellularized corneal xenografts. Acta Biomater 2019;96:330-344.Abstract
To address the shortcomings associated with corneal transplants, substantial efforts have been focused on developing new modalities such as xenotransplantion. Xenogeneic corneas are anatomically and biomechanically similar to the human cornea, yet their applications require prior decellularization to remove the antigenic components to avoid rejection. In the context of bringing decellularized corneas into clinical use, sterilization is a crucial step that determines the success of the transplantation. Well-standardized sterilization methods, such as gamma irradiation (GI), have been applied to decellularized porcine corneas (DPC) to avoid graft-associated infections in human recipients. However, little is known about the effect of GI on decellularized corneal xenografts. Here, we evaluated the radiation effect on the ultrastructure, optical, mechanical and biological properties of DPC. Transmission electron microscopy revealed that gamma irradiated decellularized porcine cornea (G-DPC) preserved its structural integrity. Moreover, the radiation did not reduce the optical properties of the tissue. Neither DPC nor G-DPC led to further activation of complement system compared to native porcine cornea when exposed to plasma. Although, DPC were mechanically comparable to the native tissue, GI increased the mechanical strength, tissue hydrophobicity and resistance to enzymatic degradation. Despite these changes, human corneal epithelial, stromal, endothelial and hybrid neuroblastoma cells grew and differentiated on DPC and G-DPC. Thus, GI may achieve effective tissue sterilization without affecting critical properties that are essential for corneal transplant survival.
Shanbhag SS, Rashad R, Chodosh J, Saeed HN. Long-Term Effect of a Treatment Protocol for Acute Ocular Involvement in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis. Am J Ophthalmol 2019;208:331-341.Abstract
PURPOSE: To describe the long-term effect of a treatment protocol for ocular involvement in acute Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), including focused ocular examination and pathology-appropriate use of lubrication, topical corticosteroids, topical antibiotics, and amniotic membrane transplantation (AMT). DESIGN: Retrospective, comparative case series. METHODS: A total of 48 patients (96 eyes) were included in this study. Nine of 48 patients (18 eyes) had acute SJS/TEN from 2000 to 2007 and did not receive protocol care (Group I). Thirty-nine of 48 patients (78 eyes) had acute SJS/TEN from 2008 to 2017 and received protocol care (Group II). The main outcome measures were best-corrected visual acuity (BCVA) at final follow-up visit and incidence of complications in the chronic phase. RESULTS: No eyes in Group I received AMT for SJS/TEN, compared to 87% of qualifying eyes in Group II (P < .0001) There was a significant difference in the proportion of eyes with BCVA ≥20/40 at last follow-up between Group I and Group II (33% vs 92%, P < .001). The proportion of eyes with vision-threatening complications in the chronic phase was significantly higher in Group I versus Group II (67% vs 17%, P = .002), with most complications occurring in the first 2 years after disease onset in both groups. CONCLUSIONS: A specific protocol for acute ocular care in SJS/TEN, including aggressive use of AMT, was highly successful in reducing corneal blindness and severe vision-threatening complications of the disorder.
Kheirkhah A, Coco G, Satitpitakul V, Pham TT, Dana R. Limbal and Conjunctival Epithelial Thickness in Ocular Graft-Versus-Host Disease. Cornea 2019;38(10):1286-1290.Abstract
PURPOSE: To compare the thickness of the limbal epithelium (LE) and the bulbar conjunctival epithelium (BCE) between patients with dry eye disease (DED) with and without ocular graft-versus-host disease (GVHD). METHODS: This cross-sectional study enrolled 40 patients with moderate to severe DED including 20 with and 20 without chronic ocular GVHD. All patients had a comprehensive clinical ophthalmic assessment. Moreover, the thickness of the LE and BCE in both nasal and temporal regions of both eyes was measured using spectral domain optical coherence tomography. RESULTS: The average LE thickness in all patients with dry eye (GVHD and non-GVHD) was 65.8 ± 11.9 μm temporally and 69.7 ± 11.1 μm nasally (P = 0.02). The average BCE thickness was 55.8 ± 11.4 μm temporally and 60.1 ± 11.0 μm nasally (P = 0.03). There were no statistically significant differences between GVHD and non-GVHD groups in LE thickness (69.6 ± 11.7 vs. 66.1 ± 6.2 μm, respectively, P = 0.31) or BCE thickness (58.9 ± 9.6 vs. 57.3 ± 9.8 μm, respectively, P = 0.82). There was a significant correlation between LE thickness and BCE thickness (P = 0.01, Rs = 0.41). A statistically significant negative correlation was also observed between LE thickness and age (P = 0.002, Rs = -0.35). There were no significant correlations between the thickness of the LE or BCE and other clinical parameters. CONCLUSIONS: No difference exists in the thickness of the ocular surface epithelia between dry eyes with and without ocular GVHD, which would suggest that these epithelial changes may be independent of the underlying etiology and possibly only reflect the disease severity. Furthermore, there are regional variations in the thickness of the ocular surface epithelia in patients with DED.
Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, Chauhan SK. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul Surf 2019;Abstract
PURPOSE: Corneal injuries are associated with significant impairment in vision. Mesenchymal stem cells (MSCs) have been shown to limit inflammation and promote tissue repair at the ocular surface. Here, we evaluate the efficacies of different modes of MSC delivery (topical, subconjunctival, intraperitoneal [IP] and intravenous [IV]) to promote tissue repair and restore corneal transparency in a murine model of corneal injury. METHODS: MSCs were purified from the bone marrow of C57BL/6 J mice and expanded using plastic adherence in vitro. Corneal injury was created using an Algerbrush, and 0.5 × 10 MSCs/mouse were administered via topical, subconjunctival, IP or IV routes. Qdot-labeled MSCs were employed to determine the effect of route of administration on corneal and conjunctival MSC frequencies. Corneal opacity scores were calculated using ImageJ. Expression of inflammatory cytokines was quantified by qPCR, and infiltration of CD45 cells was evaluated by flow cytometry. RESULTS: Subconjunctival or IV administration results in increased frequencies of MSCs in ocular surface tissues following corneal injury, relative to topical or intraperitoneal delivery. Subconjunctival or IV administration reduces: (i) corneal opacity, (ii) tissue fibrosis as quantified by α-Sma expression, (iii) the expression of inflammatory cytokines (Il-1β and Tnf-α) and (iv) CD45 inflammatory cell infiltration relative to untreated injured control animals. Administration via subconjunctival or IV routes was observed to accelerate corneal repair by restoring tissue architecture and epithelial integrity. CONCLUSIONS: Our data suggest that subconjunctival or IV delivery of MSCs have superior therapeutic efficacy compared to topical or IP delivery following corneal injury.
AbuSamra DB, Mauris J, Argüeso P. Galectin-3 initiates epithelial-stromal paracrine signaling to shape the proteolytic microenvironment during corneal repair. Sci Signal 2019;12(590)Abstract
Paracrine interactions between epithelial cells and stromal fibroblasts occur during tissue repair, development, and cancer. Crucial to these processes is the production of matrix metalloproteinases (MMPs) that modify the microenvironment. Here, we demonstrated that the carbohydrate-binding protein galectin-3 stimulated microenvironment remodeling in the cornea by promoting the paracrine action of secreted interleukin-1β (IL-1β). Through live cell imaging in vitro, we observed rapid activation of the promoter in clusters of cultured human epithelial cells after direct heterotypic contact with single primary human fibroblasts. Soluble recombinant galectin-3 and endogenous galectin-3 of epithelial origin both stimulated MMP9 activity through the induction of IL-1β secretion by fibroblasts. In vivo, mechanical disruption of the basement membrane in wounded corneas prompted an increase in the abundance of IL-1β in the stroma and increased the amount of gelatinase activity in the epithelium. Moreover, corneas of galectin-3-deficient mice failed to stimulate IL-1β after wounding. This mechanism of paracrine control has broad importance for our understanding of how the proteolytic microenvironment is modified in epithelial-stromal interactions.
Chen X, Sullivan BD, Rahimi Darabad R, Liu S, Kam WR, Sullivan DA. Are BALB/c Mice Relevant Models for Understanding Sex-Related Differences in Gene Expression in the Human Meibomian Gland?. Cornea 2019;38(12):1554-1562.Abstract
BACKGROUND: A compelling feature of dry eye disease is that it occurs predominantly in women. We hypothesize that this female prevalence is linked to sex-related differences in the meibomian gland (MG). This gland plays a critical role in maintaining the tear film, and its dysfunction is a major cause of dry eye disease. To understand the factors that underlie MG sexual dimorphism and promote dry eye in women, we seek to identify an optimal model for the human MG. Our goal was to determine whether a murine MG is such a model. Toward that end, we examined whether sex differences in MG gene expression are the same in BALB/c mice and humans. METHODS: Eyelid tissues were collected from humans (n = 5-7/sex) and BALB/c mice (n = 9/sex). MGs were isolated and processed for the evaluation of gene expression by using microarrays and bioinformatics software. RESULTS: Our analysis of the 500 most highly expressed genes from human and mouse MGs showed that only 24.4% were the same. Our comparison of 100 genes with the greatest sex-associated differences in human and mouse MGs demonstrated that none were the same. Sex also exerted a significant impact on numerous ontologies, Kyoto Encyclopedia of Genes and Genomes pathways, and chromosomes, but these effects were primarily species-specific. CONCLUSIONS: Our results indicate that BALB/c mice are not optimal models for understanding sex-related differences in gene expression of the human MG.
Foulsham W, Dohlman TH, Mittal SK, Taketani Y, Singh RB, Masli S, Dana R. Thrombospondin-1 in ocular surface health and disease. Ocul Surf 2019;Abstract
Thrombospondin 1 (TSP-1) is an extracellular matrix protein that interacts with a wide array of ligands including cell receptors, growth factors, cytokines and proteases to regulate various physiological and pathological processes. Constitutively expressed by certain ocular surface tissues (e.g. corneal and conjunctival epithelium), TSP-1 expression is modulated during ocular surface inflammation. TSP-1 is an important activator of latent TGF-β, serving to promote the immunomodulatory and wound healing functions of TGF-β. Mounting research has deepened our understanding of how TSP-1 expression (and lack thereof) contributes to ocular surface homeostasis and disease. Here, we review current knowledge of the function of TSP-1 in dry eye disease, ocular allergy, angiogenesis/lymphangiogenesis, corneal transplantation, corneal wound healing and infectious keratitis.
Wirta DL, Torkildsen GL, Moreira HR, Lonsdale JD, Ciolino JB, Jentsch G, Beckert M, Ousler GW, Steven P, Krösser S. A Clinical Phase II Study to Assess Efficacy, Safety, and Tolerability of Waterfree Cyclosporine Formulation for Treatment of Dry Eye Disease. Ophthalmology 2019;126(6):792-800.Abstract
PURPOSE: To compare the efficacy, safety, and tolerability of waterfree cyclosporine formulation (CyclASol) at 2 concentrations (0.1% and 0.05% of cyclosporine [CsA]) to vehicle when applied twice daily for 16 weeks in patients with dry eye disease (DED). An open-label Restasis (Allergan, Irvine, CA) arm was included to allow a direct comparison with an approved therapy. DESIGN: An exploratory phase II, multicenter, randomized, vehicle-controlled clinical trial, double-masked between CyclASol and vehicle with an open-label comparator. PARTICIPANTS: Two hundred and seven eligible patients with a history of dry eye disease were randomized 1:1:1:1 to 1 of 4 treatment arms (CyclASol 0.05%, n = 51; CyclASol 0.1%, n = 51; vehicle, n = 52, and Restasis, n = 53). METHODS: After a 2-week run-in period with twice-daily dosing of Systane Balance (Alcon, Fort Worth, TX), patients were randomized to the respective treatment arm and dosed twice daily for 16 weeks. MAIN OUTCOME MEASURES: The study was set up to explore efficacy on a number of sign and symptom end points including total and subregion corneal fluorescein staining, conjunctival staining, visual analog scale (VAS) for dry eye symptoms VAS severity, and Ocular Surface Disease Index (OSDI) questionnaire. RESULTS: CyclASol showed a consistent reduction in corneal and conjunctival staining compared with both vehicle and Restasis over the 16-week treatment period, with an early onset of effect (at day 14). A mixed-effects model-based approach demonstrated that the CyclASol drug effect was statistically significant over vehicle (total corneal staining P < 0.1, central corneal staining P < 0.001, conjunctival staining P < 0.01). This model-based analysis suggests a significant CyclASol effect for OSDI as symptom parameter (P < 0.01). The numbers of ocular adverse events were low in all treatment groups. CONCLUSIONS: CyclASol showed efficacy, safety, and tolerability at 2 concentrations in moderate-to-severe DED. In a direct head-to-head against open-label Restasis, CyclASol was found to have an earlier onset of action, as early as after 2 weeks of treatment, in relieving the signs of DED, as measured by corneal and conjunctival staining. The central region of the cornea, an important area for visual function in dry eye sufferers, was shown to have the most benefit from treatment. Excellent safety, tolerability, and comfort profile supports this new CsA formulation as having a positive benefit-to-risk ratio.
Mittal SK, Foulsham W, Shukla S, Elbasiony E, Omoto M, Chauhan SK. Mesenchymal Stromal Cells Modulate Corneal Alloimmunity via Secretion of Hepatocyte Growth Factor. Stem Cells Transl Med 2019;8(10):1030-1040.Abstract
Mesenchymal stromal cells (MSCs) are multipotent stem cells that participate in tissue repair and possess considerable immunomodulatory potential. MSCs have been shown to promote allograft survival, yet the mechanisms behind this phenomenon have not been fully defined. Here, we investigate the capacity of MSCs to suppress the allogeneic immune response by secreting the pleiotropic molecule hepatocyte growth factor (HGF). Using an in vivo mouse model of corneal transplantation, we report that MSCs promote graft survival in an HGF-dependent manner. Moreover, our data indicate that topically administered recombinant HGF (a) suppresses antigen-presenting cell maturation in draining lymphoid tissue, (b) limits T-helper type-1 cell generation, (c) decreases inflammatory cell infiltration into grafted tissue, and (d) is itself sufficient to promote transplant survival. These findings have potential translational implications for the development of HGF-based therapeutics. Stem Cells Translational Medicine 2019;8:1030-1040.
Szczotka-Flynn LB, Maguire MG, Ying G-S, Lin MC, Bunya VY, Dana R, Asbell PA, and Group DEAM (DREAM) SR. Impact of Dry Eye on Visual Acuity and Contrast Sensitivity: Dry Eye Assessment and Management Study. Optom Vis Sci 2019;96(6):387-396.Abstract
SIGNIFICANCE: Identification of the association of specific signs of dry eye disease with specific visual function deficits may allow for more targeted approaches to treatment. PURPOSE: The purpose of this study was to explore the association of dry eye signs and symptoms with visual acuity (VA) and contrast sensitivity in the Dry Eye Assessment and Management study. METHODS: Baseline data from participants in the Dry Eye Assessment and Management study were used in this secondary cross-sectional analysis. Standardized procedures were used to obtain results on the Ocular Surface Disease Index (OSDI), high-contrast logMAR VA, contrast sensitivity, tear film debris, tear breakup time (TBUT), corneal fluorescein staining, meibomian gland evaluation, conjunctival lissamine green staining, and Schirmer test scores. Generalized linear models that included age, refractive error status, and cataract status were used to assess the association between VA and contrast sensitivity with OSDI score and each dry eye sign. The Hochberg procedure was used to account for multiple comparisons. RESULTS: Among 487 participants (974 eyes), worse VA was associated with worse mean score on the OSDI vision subscale (39.4 for VA 20/32 or worse vs. 32.4 for VA 20/16 or better; adjusted linear trend, P = .02); scores were not associated with contrast sensitivity. Severe meibomian gland plugging and abnormal secretions were associated with worse mean log contrast sensitivity (1.48 for severe vs. 1.54 for not plugged [P = .04] and 1.49 for obstructed vs. 1.57 for clear [P = .002], respectively). Longer TBUT was associated with better mean log contrast sensitivity (1.57 for TBUT >5 seconds and 1.51 for TBUT ≤2 seconds, P < .0001). CONCLUSIONS: Worse VA rather than worse contrast sensitivity drives vision-related symptoms in dry eye. Greater tear film instability was associated with worse contrast sensitivity.
Morthen MK, Tellefsen S, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019;60(6):2181-2197.Abstract
Purpose: Sjögren syndrome is an autoimmune disorder that occurs almost exclusively in women and is associated with extensive inflammation in lacrimal tissue, an immune-mediated destruction and/or dysfunction of glandular epithelial cells, and a significant decrease in aqueous tear secretion. We discovered that androgens suppress the inflammation in, and enhance the function of, lacrimal glands in female mouse models (e.g., MRL/MpJ-Tnfrsf6lpr [MRL/lpr]) of Sjögren syndrome. In contrast, others have reported that androgens induce an anomalous immunopathology in lacrimal glands of nonobese diabetic/LtJ (NOD) mice. We tested our hypothesis that these hormone actions reflect unique, strain- and tissue-specific effects, which involve significant changes in the expression of immune-related glandular genes. Methods: Lacrimal glands were obtained from age-matched, adult, female MRL/lpr and NOD mice after treatment with vehicle or testosterone for up to 3 weeks. Tissues were processed for analysis of differentially expressed mRNAs using CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with bioinformatics and statistical software. Results: Testosterone significantly influenced the expression of numerous immune-related genes, ontologies, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in lacrimal glands of MRL/lpr and NOD mice. The nature of this hormone-induced immune response was dependent upon the autoimmune strain, and was not duplicated within lacrimal tissues of nonautoimmune BALB/c mice. The majority of immune-response genes regulated by testosterone were of the inflammatory type. Conclusions: Our findings support our hypothesis and indicate a major role for the lacrimal gland microenvironment in mediating androgen effects on immune gene expression.
Shu DY, Hutcheon AEK, Zieske JD, Guo X. Epidermal Growth Factor Stimulates Transforming Growth Factor-Beta Receptor Type II Expression In Corneal Epithelial Cells. Sci Rep 2019;9(1):8079.Abstract
We previously demonstrated that inhibition of epidermal growth factor receptor (EGFR) slowed corneal epithelial migration. Here we examine the effect of EGF on transforming growth factor-beta receptor II (TGF-βRII) in a corneal wound-healing model and primary human corneal epithelial cells (pHCE). Corneal debridement wounds were made and allowed to heal ± Tyrphostin AG1478 (EGFR inhibitor), and assayed for EGFR activation and EGFR and TGF-βRII localization. Primary HCE were treated with EGF ± U0126 (MEK inhibitor) and assayed for TGF-βRII expression. EGFR activation was maximal 15 minutes after wounding and localized in the migrating epithelial cells. TGF-βRII localization was also observed in the migrating epithelium and was reduced when EGFR was blocked. When pHCE were treated with EGF for 6 hours, the cells produced enhanced levels of TGF-βRII, which was blocked by U0126. Downstream signaling pathways of MEK (p38 and ERK1/2) were then examined, and TGF-β1 and EGF were found to have differential effects on the phosphorylation of p38 and ERK1/2, with TGF-β1 upregulating p-p38 but not pERK1/2 and EGF upregulating pERK1/2 but not p-p38. Taken together, these data indicate that EGF stimulates TGF-βRII through ERK1/2 and EGFR signaling, suggesting interplay between EGF- and TGF-β-signaling pathways during corneal wound repair.
Fayed M, Chen TC. Pediatric Intraocular Pressure Measurements: Tonometers, Central Corneal Thickness, and Anesthesia. Surv Ophthalmol 2019;Abstract
Measuring intraocular pressure (IOP) is the cornerstone of a comprehensive glaucoma exam. In babies or small children, however, IOP measurements are problematic, cannot often be done at the slit lamp, and are sometimes require general anesthesia. Therefore, it is essential for an ophthalmologist who examines a pediatric patient to be aware of the different tonometers used in children, as well as the effects of central corneal thickness (CCT) and anesthesia on IOP measurements. Goldmann applanation tonometry is the gold standard for IOP assessment. Most alternative tonometers tend to give higher IOP readings compared to the Goldmann applanation tonometer, and readings between different tonometers are often not interchangeable. Like Goldmann tonometry, many of these alternative tonometers are affected by CCT, with thicker corneas having artifactually high IOP readings and thinner corneas having artifactually lower IOP readings. Although various machines can be used to compensate for corneal factors (e.g. the dynamic contour tonometer and ocular response analyzer), it is important to be aware that certain ocular diseases can be associated with abnormal CCT values and that their IOP readings need to be interpreted accordingly. Because induction and anesthetics can affect IOP, office IOPs taken in awake patients are always the most accurate.

Pages