Glaucoma

X
Xu BY, Friedman DS, Foster PJ, Jiang Y, Pardeshi AA, Jiang Y, Munoz B, Aung T, He M. Anatomic Changes and Predictors of Angle Widening after Laser Peripheral Iridotomy: The Zhongshan Angle Closure Prevention Trial. Ophthalmology 2021;128(8):1161-1168.Abstract
PURPOSE: To assess anatomic changes after laser peripheral iridotomy (LPI) and predictors of angle widening based on anterior segment (AS) OCT and angle opening based on gonioscopy. DESIGN: Prospective observational study. PARTICIPANTS: Primary angle-closure suspects (PACSs) 50 to 70 years of age. METHODS: Participants of the Zhongshan Angle Closure Prevention (ZAP) Trial underwent gonioscopy and AS-OCT imaging at baseline and 2 weeks after LPI. Primary angle-closure suspect was defined as the inability to visualize pigmented trabecular meshwork in 2 or more quadrants on static gonioscopy. Laser peripheral iridotomy was performed on 1 eye per patient in superior (between 11 and 1 o'clock) or temporal or nasal locations (at or below 10:30 or 1:30 o'clock). Biometric parameters in horizontal and vertical AS-OCT scans were measured and averaged. Linear and logistic regression modeling were performed to determine predictors of angle widening, defined as change in mean angle opening distance measured at 750 μm from the scleral spur (AOD750); poor angle widening, defined as the lowest quintile of change in mean AOD750; and poor angle opening, defined as residual PACS after LPI based on gonioscopy. MAIN OUTCOME MEASURES: Anatomic changes and predictors of angle widening and opening after LPI. RESULTS: Four hundred fifty-four patients were included in the analysis. Two hundred nineteen underwent superior LPI and 235 underwent temporal or nasal LPI. Significant changes were found among most biometric parameters (P < 0.006) after LPI, including greater AOD750 (P < 0.001). One hundred twenty eyes (26.4%) showed residual PACS after LPI. In multivariate regression analysis, superior LPI location (P = 0.004), smaller AOD750 (P < 0.001), and greater iris curvature (P < 0.001), were predictive of greater angle widening. Temporal or nasal LPI locations (odds ratio [OR], 2.60, P < 0.001) was predictive of poor angle widening. Smaller mean gonioscopy grade (OR, 0.34, 1-grade increment) was predictive of poor angle opening. CONCLUSIONS: Superior LPI location results in significantly greater angle widening compared with temporal or nasal locations in a Chinese population with PACS. This supports consideration of superior LPI locations to optimize anatomic changes after LPI.
Y
Yang S-A, Mitchell WG, Hall N, Elze T, Miller JW, Lorch AC, Zebardast N. Usage Patterns of Minimally Invasive Glaucoma Surgery (MIGS) Differ by Glaucoma Type: IRIS Registry Analysis 2013-2018. Ophthalmic Epidemiol 2021;:1-9.Abstract
Purpose: To examine patterns of standard (trabeculectomy or glaucoma drainage devices, GDDs) vs novel (minimally invasive glaucoma surgery, MIGS) surgical techniques in the US.Methods: We used the American Academy of Ophthalmology (AAO) IRIS® Registry (Intelligent Research in Sight) queried between 2013 and 2018 (inclusive) to calculate the cumulative proportion of stand-alone, concurrent (same day) or sequential (subsequent day) glaucoma surgical techniques performed in each glaucoma diagnosis type. Secondary analyses of adjusted proportions of concurrent and sequential surgeries stratified by glaucoma diagnosis were also performed.Results: Of 203,146 eyes receiving glaucoma surgeries, open angle glaucoma (OAG) was most likely to undergo all types of intervention. The iStent was the most commonly performed MIGS, primarily for those with normal tension glaucoma (NTG) or OAG (p < .001). Conversely, GDD was the most commonly performed procedure in secondary glaucoma or other (specified) glaucoma (p < .001). ECP and iStent were the most common concurrent procedures performed; most often for OAG and NTG (p < .001). After an initial standard surgery, most eyes underwent recurrent standard interventions (90.3%). ECP was the most common MIGS performed after an initial standard surgery; particularly in primary angle-closure (PACG) and secondary glaucoma eyes (p < .001).Conclusion: Glaucoma type may influence the choice of glaucoma procedures and the decision to perform concurrent as well sequential surgical procedures. Given the poorly understood long term safety and effectiveness of MIGS, and with substantially increasing use of MIGS procedures in recent years, future studies comparing their safety and effectiveness vs standard interventions, for a variety of glaucoma types, is needed.
Yang L, Li S, Miao L, Huang H, Liang F, Teng X, Xu L, Wang Q, Xiao W, Ridder WH, Ferguson TA, Chen DF, Kaufman RJ, Hu Y. Rescue of Glaucomatous Neurodegeneration by Differentially Modulating Neuronal Endoplasmic Reticulum Stress Molecules. J Neurosci 2016;36(21):5891-903.Abstract

UNLABELLED: Axon injury is an early event in neurodegenerative diseases that often leads to retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. The connection of these two obviously sequential degenerative events, however, is elusive. Deciphering the upstream signals that trigger the neurodegeneration cascades in both neuronal soma and axon would be a key step toward developing the effective neuroprotectants that are greatly needed in the clinic. We showed previously that optic nerve injury-induced neuronal endoplasmic reticulum (ER) stress plays an important role in retinal ganglion cell (RGC) death. Using two in vivo mouse models of optic neuropathies (traumatic optic nerve injury and glaucoma) and adeno-associated virus-mediated RGC-specific gene targeting, we now show that differential manipulation of unfolded protein response pathways in opposite directions-inhibition of eukaryotic translation initiation factor 2α-C/EBP homologous protein and activation of X-box binding protein 1-promotes both RGC axons and somata survival and preserves visual function. Our results indicate that axon injury-induced neuronal ER stress plays an important role in both axon degeneration and neuron soma death. Neuronal ER stress is therefore a promising therapeutic target for glaucoma and potentially other types of neurodegeneration. SIGNIFICANCE STATEMENT: Neuron soma and axon degeneration have distinct molecular mechanisms although they are clearly connected after axon injury. We previously demonstrated that axon injury induces neuronal endoplasmic reticulum (ER) stress and that manipulation of ER stress molecules synergistically promotes neuron cell body survival. Here we investigated the possibility that ER stress also plays a role in axon degeneration and whether ER stress modulation preserves neuronal function in neurodegenerative diseases. Our results suggest that neuronal ER stress is a general mechanism of degeneration for both neuronal cell body and axon, and that therapeutic targeting of ER stress produces significant functional recovery.

Yang S-A, Mitchell W, Hall N, Elze T, Lorch AC, Miller JW, Zebardast N, Zebardast N. Trends and Usage Patterns of Minimally Invasive Glaucoma Surgery (MIGS) in the US: IRIS Registry Analysis 2013-2018. Ophthalmol Glaucoma 2021;Abstract
OBJECTIVE: Understanding trends and patterns in the use of minimally invasive glaucoma surgery (MIGS) and patient profiles undergoing each procedure is important given their relative expense and unknown long-term safety and effectiveness. DESIGN: Retrospective analysis SUBJECTS: MIGS and standard glaucoma surgeries recorded in the American Academy of Ophthalmology (AAO) Intelligent Research in Sight (IRIS®) Registry. METHODS: We used the data from IRIS® Registry between 2013-2018 (inclusive) to measure annual number of MIGS and standard surgical techniques (trabeculectomy or glaucoma drainage device (GDD)) performed in the US, stratified by demographic characteristics. Secondary analyses of concurrent surgeries and of subsequent surgeries for MIGS and standard surgical technique were also conducted. MAIN OUTCOME MEASURES: Trends and sociodemographic characteristics of MIGS usage in the US. RESULTS: 203,332 eyes and 232,537 unique procedures had associated, documented International Statistical Classification of Diseases and Related Health Problems (ICD) 9/10 codes for glaucoma and were included in final analyses. Among eyes with documented glaucoma diagnoses, there was a substantial increase in annual MIGS procedures over the study period (from 7,586 in 2013 to 39,677), and a smaller decrease in standard glaucoma procedures (from 16,215 to 13,701). The proportion of iStent procedures almost tripled during the study period (from 14% to 40%), and by 2017 accounted for almost half (43.7%) of all glaucoma surgeries in the US. 21,025 (10.3%) of all eyes received multiple procedures; 7,638 (36.3%) on the same day and 13,387 (63.7%) on subsequent days. ECP and iStent were the most common concurrent procedures (55.4% of all concurrent procedures). Trabeculectomy and GDD were most commonly followed by another standard glaucoma surgery, but when followed by sequential MIGS, ECP and goniotomy were the most common procedures performed (33.0%, 21.9%, respectively). CONCLUSIONS: There was a significant increase in MIGS use over the recent six-year period despite limited evidence of their long-term safety or effectiveness, highlighting the need for trials comparing safety and outcomes of novel MIGS vs traditional surgical treatments for glaucoma.
Yin Y, Benowitz LI. In Vitro and In Vivo Methods for Studying Retinal Ganglion Cell Survival and Optic Nerve Regeneration. Methods Mol Biol 2018;1695:187-205.Abstract
Glaucoma is marked by a progressive degeneration of the optic nerve and delayed loss of retinal ganglion cells (RGCs), the projection neurons of the eye. Because RGCs are not replaced and because surviving RGCs cannot regenerate their axons, the visual loss in glaucoma is largely irreversible. Here, we describe methods to evaluate treatments that may be beneficial for treating glaucoma using in vitro cell culture models (immunopanning to isolate neonatal RGCs, dissociated mature retinal neurons, retinal explants) and in vivo models that test potential treatments or investigate underlying molecular mechanisms in an intact system. Potentially, use of these models can help investigators continue to improve treatments to preserve RGCs and restore visual function in patients with glaucoma.
Yousefi S, Elze T, Pasquale LR, Saeedi O, Wang M, Shen LQ, Wellik SR, De Moraes CG, Myers JS, Boland MV. Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard. Ophthalmology 2020;127(9):1170-1178.Abstract
PURPOSE: To develop an artificial intelligence (AI) dashboard for monitoring glaucomatous functional loss. DESIGN: Retrospective, cross-sectional, longitudinal cohort study. PARTICIPANTS: Of 31 591 visual fields (VFs) on 8077 subjects, 13 231 VFs from the most recent visit of each patient were included to develop the AI dashboard. Longitudinal VFs from 287 eyes with glaucoma were used to validate the models. METHOD: We entered VF data from the most recent visit of glaucomatous and nonglaucomatous patients into a "pipeline" that included principal component analysis (PCA), manifold learning, and unsupervised clustering to identify eyes with similar global, hemifield, and local patterns of VF loss. We visualized the results on a map, which we refer to as an "AI-enabled glaucoma dashboard." We used density-based clustering and the VF decomposition method called "archetypal analysis" to annotate the dashboard. Finally, we used 2 separate benchmark datasets-one representing "likely nonprogression" and the other representing "likely progression"-to validate the dashboard and assess its ability to portray functional change over time in glaucoma. MAIN OUTCOME MEASURES: The severity and extent of functional loss and characteristic patterns of VF loss in patients with glaucoma. RESULTS: After building the dashboard, we identified 32 nonoverlapping clusters. Each cluster on the dashboard corresponded to a particular global functional severity, an extent of VF loss into different hemifields, and characteristic local patterns of VF loss. By using 2 independent benchmark datasets and a definition of stability as trajectories not passing through over 2 clusters in a left or downward direction, the specificity for detecting "likely nonprogression" was 94% and the sensitivity for detecting "likely progression" was 77%. CONCLUSIONS: The AI-enabled glaucoma dashboard, developed using a large VF dataset containing a broad spectrum of visual deficit types, has the potential to provide clinicians with a user-friendly tool for determination of the severity of glaucomatous vision deficit, the spatial extent of the damage, and a means for monitoring the disease progression.
Z
Zebardast N, Sekimitsu S, Wang J, Elze T, Gharahkhani P, Cole BS, Lin MM, Segrè AV, Wiggs JL, Wiggs JL. Characteristics of Gln368Ter Myocilin variant and influence of polygenic risk on glaucoma penetrance in the UK Biobank. Ophthalmology 2021;Abstract
OBJECTIVE: MYOC (myocilin) mutations account for 3-5% of primary open angle glaucoma (POAG). We aimed to understand the true population-wide penetrance and characteristics of glaucoma among individuals with the most common MYOC variant (p.Gln368Ter) and the impact of a POAG polygenic risk score (PRS) in this population. DESIGN: Cross-sectional population-based METHODS: Individuals with the p.Gln368Ter variant were identified among 77,959 UK Biobank participants with fundus photographs (FPs). A genome-wide POAG PRS was computed and two masked graders reviewed FPs for disc-defined glaucoma (DDG). MAIN OUTCOME MEASURES: Penetrance of glaucoma RESULTS: 200 individuals carried the p.Gln368Ter heterozygous genotype, and 177 had gradable FPs. 132 had no evidence of glaucoma, 45 (25.4%) had probable/definite glaucoma in at least one eye and 19 (10.7%) had bilateral glaucoma. There were no differences in age, race/ethnicity, or gender among groups (p>0.05). Of those with DDG, 31% self-reported or had ICD 9/10 code for glaucoma, while 69% were undiagnosed. Subjects with DDG had higher medication-adjusted cornea-corrected intraocular pressure (IOPcc) (p<0.001) vs. those without glaucoma. This difference in IOPcc was larger in DDG with prior glaucoma diagnosis vs. those not diagnosed (p<0.001). Majority of p.Gln368Ter carriers had IOP in the normal range (<=21 mmHg), though this proportion was lower in those with DDG (p<0.02) and those with prior glaucoma diagnosis (p<0.03). Prevalence of DDG increased with each decile of the POAG PRS. Subjects with DDG had significantly higher PRS compared to those without glaucoma (0.37 ± 0.97 vs 0.01 ± 0.90, p=0.03). Of those with DDG, individuals with prior diagnosis of glaucoma had higher PRS compared to undiagnosed individuals (1.31 ± 0.64 vs 0.00 ± 0.81, p<0.001) and had 27.5 times (95%CI 2.5-306.6) adjusted odds of being in the top decile of PRS for POAG. CONCLUSION: 1 in 4 individuals with MYOC p.Gln368Ter mutation had evidence of glaucoma, a substantially higher penetrance than previously estimated, with 69% of cases undetected. A large portion of p.Gln368Ter carriers have IOP in the normal range, despite similar age, including those with DDG. PRS increases disease penetrance and severity of disease, supporting the utility of PRS in optimizing risk stratification among MYOC p.Gln368Ter carriers.
Zhao J, Chen W, Huang X, Peng S, Zhu T, Deng Z, Liang P, Chang H, Fan BJ. Serum Th1 and Th17 related cytokines and autoantibodies in patients with Posner-Schlossman syndrome. PLoS One 2017;12(4):e0175519.Abstract

Posner-Schlossman syndrome (PSS) shares some clinical features with uveitis and open angle glaucoma. Cytokines and autoantibodies have been associated with uveitis and open angle glaucoma. However, the role of serum cytokines and autoantibodies in the pathogenesis of PSS remains unknown. This study aimed to evaluate the associations of type 1 T helper (Th1) and Th17 related cytokines and autoantibodies with PSS. Peripheral blood serum samples were collected from 81 patients with PSS and 97 gender- and age-matched healthy blood donors. Th1 and Th17 related cytokines, including interleukin-1β (IL-1β), IL-12, tumor necrosis factor-α (TNF-α), interferon- γ (IFN-γ), IL-6 and IL-17, and glucose-6-phosphate isomerase (GPI) were determined by double antibody sandwich ELISA. Anti-nuclear antibody (ANA), anti-keratin antibody (AKA) and anti-neutrophil cytoplasmic antibody (ANCA) were detected by indirect immunofluorescence assay. Anti-cardiolipin antibody (ACA)-IgG, ACA-IgM, ACA-IgA, anti-double stranded DNA (anti-dsDNA) and anti-cyclic citrullinated peptide antibody (anti-CCP) were detected by indirect ELISA. Serum levels of IL-1β, IL-12 and IL-6 in PSS patients were significantly lower than those in controls (P < 0.003), and these associations survived the Bonferroni correction (Pc < 0.018). There was no significant difference in serum levels of TNF-α, IFN-γ and IL-17 between the PSS and control groups (Pc > 0.12). Positive rate of serum anti-dsDNA in PSS patients was significantly higher than that in the control group (P = 0.002, Pc = 0.018), while positive rates of serum ANA, AKA, ANCA, ACA-IgG, ACA-IgM, ACA-IgA, GPI and anti-CCP in the PSS group were not significantly different from those in the control group (Pc > 0.09). These results suggest that anti-dsDNA may contribute to the pathogenesis of PSS, while Th1 and Th17 related cytokines and other autoantibodies may not be major contributors to PSS.

Zhao J, Zhu T, Chen W, Fan BJ, He L, Yang B, Deng Z. Human Leukocyte Antigens-B and -C Loci Associated with Posner-Schlossman Syndrome in a Southern Chinese Population. PLoS One 2015;10(7):e0132179.Abstract

The etiology of Posner-Schlossman syndrome (PSS) remains unknown. The association of human leukocyte antigens (HLA) allelic diversity with PSS has been poorly investigated. To evaluate the association of allelic polymorphisms of class I HLA-A, -B and -C and class II HLA-DRB1 and -DQB1 with PSS, 100 unrelated patients with PSS and 128 age- and ethnically matched control subjects were recruited from a southern Chinese Han population. Polymorphisms in exons 2-4 for HLA-A, -B, -C loci, exon 2 for HLA-DRB1 and exons 2,3 for HLA-DQB1 were analyzed for association with PSS at allele and haplotype levels. The allele frequency of HLA-C*1402 in PSS patients was significantly higher than that in controls (P = 0.002, OR = 4.12). This association survived the Bonferroni correction (Pc = 0.04). The allele frequency of HLA-B*1301 in PSS patients was lower than that in the control group (P = 0.003, OR = 0.21), although this association did not survive the Bonferroni correction (Pc = 0.16). In PSS patients, the haplotype frequencies of HLA-A*1101~C*1402 and B*5101~C*1402 were higher than that in controls (P = 0.03, OR = 4.44; P = 0.02, OR = 3.20; respectively), while the HLA-B*1301~C*0304 was lower than that in controls (P = 0.007, OR = 0.23), although these associations did not survive the Bonferroni correction (Pc > 0.16). This study for the first time demonstrated that polymorphisms at the HLA-B and HLA-C loci were nominally associated with PSS in the southern Chinese Han population. Our results suggest that HLA-C*1402, A*1101~C*1402 and B*5101~C*1402 might be risk factors for PSS, whereas HLA-B*1301 plus B*1301~C*0304 might be protective factors against PSS, but even larger datasets are required to confirm these findings. Findings from this study provide valuable new clues for investigating the mechanisms and development of new diagnosis and treatment for PSS.

Zhao J, Zhu T-H, Chen W-C, Peng S-M, Huang X-S, Cho K-S, Chen DF, Liu G-S. Optic neuropathy and increased retinal glial fibrillary acidic protein due to microbead-induced ocular hypertension in the rabbit. Int J Ophthalmol 2016;9(12):1732-1739.Abstract

AIM: To characterize whether a glaucoma model with chronic elevation of the intraocular pressure (IOP) was able to be induced by anterior chamber injection of microbeads in rabbits. METHODS: In order to screen the optimal dose of microbead injection, IOP was measured every 3d for 4wk using handheld applanation tonometer after a single intracameral injection of 10 µL, 25 µL, 50 µL or 100 µL microbeads (5×10(6) beads/mL; n=6/group) in New Zealand White rabbits. To prolong IOP elevation, two intracameral injections of 50 µL microbeads or phosphate buffer saline (PBS) were made respectively at days 0 and 21 (n=24/group). The fellow eye was not treated. At 5wk after the second injection of microbeads or PBS, bright-field microscopy and transmission electron microscopy (TEM) were used to assess the changes in the retina. The expression of glial fibrillary acidic protein (GFAP) in the retina was evaluated by immunofluorescence, quantitative real-time polymerase chain reaction and Western blot at 5wk after the second injection of microbeads. RESULTS: Following a single intracameral injection of 10 µL, 25 µL, 50 µL or 100 µL microbead, IOP levels showed a gradual increase and a later decrease over a 4wk period after a single injection of microbead into the anterior chamber of rabbits. A peak IOP was observed at day 15 after injection. No significant difference in peak value of IOP was found between 10 µL and 25 µL groups (17.13±1.25 mm Hg vs 17.63±0.74 mm Hg; P=0.346). The peak value of IOP from 50 µL group (23.25±1.16 mm Hg) was significantly higher than 10 µL and 25 µL groups (all P<0.05). Administration of 100 µL microbead solution (23.00±0.93 mm Hg) did not lead to a significant increase in IOP compared to the 50 µL group (P=0.64). A prolonged elevated IOP duration up to 8wk was achieved by administering two injections of 50 µL microbeads (20.48±1.21 mm Hg vs 13.60±0.90 mm Hg in PBS-injected group; P<0.05). The bright-field and TEM were used to assess the changes of retinal ganglion cells (RGCs). Compared with PBS-injected group, the extended IOP elevation was associated with the degeneration of optic nerve, the reduction of RGC axons (47.16%, P<0.05) and the increased GFAP expression in the retina (4.74±1.10 vs 1.00±0.46, P<0.05). CONCLUSION: Two injections of microbeads into the ocular anterior chamber of rabbits lead to a prolonged IOP elevation which results in structural abnormality as well as loss in RGCs and their axons without observable ocular structural damage or inflammatory response. We have therefore established a novel and practical model of experimental glaucoma in rabbits.

Zhou EH, Paolucci M, Dryja TP, Manley T, Xiang C, Rice DS, Prasanna G, Chen A. A Compact Whole-Eye Perfusion System to Evaluate Pharmacologic Responses of Outflow Facility. Invest Ophthalmol Vis Sci 2017;58(7):2991-3003.Abstract
Purpose: To discover novel therapies that lower IOP by increasing aqueous humor outflow facility, ex vivo ocular perfusion systems provide a valuable tool. However, currently available designs are limited by their throughput. Here we report the development of a compact, scalable perfusion system with improved throughput and its validation using bovine and porcine eyes. Methods: At a fixed IOP of 6 mm Hg, flow rate was measured by flow sensors. We validated the system by measuring the outflow responses to Y-39983 (a Rho kinase inhibitor), endothelin-1 (ET-1), ambrisentan (an antagonist for endothelin receptor A [ETA]), sphigosine-1-phosphate (S1P), JTE-013 (antagonist for S1P receptor 2 [S1P2]), S-nitroso-N-acetylpenicillamine (SNAP, a nitric oxide [NO] donor), and 3-Morpholino-sydnonimine (SIN-1, another NO donor). Results: The instrument design enabled simultaneous measurements of 20 eyes with a footprint of 1 m2. Relative to vehicle control, Y-39983 increased outflow by up to 31% in calf eyes. On the contrary, ET-1 decreased outflow by up to 79%, a response that could be blocked by pretreatment with ambrisentan, indicating a role for ETA receptors. Interestingly, the effect of ET-1 was also inhibited by up to 70% to 80% by pretreatment with NO donors, SNAP and SIN-1. In addition to testing in calf eyes, similar effects of ET-1 and ambrisentan were observed in adult bovine and porcine eyes. Conclusions: The compact eye perfusion platform provides an opportunity to efficiently identify compounds that influence outflow facility and may lead to the discovery of new glaucoma therapies.
Zhu Y, Pappas AC, Wang R, Seifert P, Sun D, Jakobs TC. Ultrastructural Morphology of the Optic Nerve Head in Aged and Glaucomatous Mice. Invest Ophthalmol Vis Sci 2018;59(10):3984-3996.Abstract
Purpose: To study age- and intraocular pressure-induced changes in the glial lamina of the murine optic nerve on the ultrastructural level. Methods: Naïve C57bl/6 mice at various ages spanning the time between early adulthood (3 months) and senescence (30 months) were used in this study. In addition, the intraocular pressure (IOP) was increased in a group of young mice by injection of microbeads into the anterior chamber. The unmyelinated segments of the optic nerve containing the glial lamina were prepared for transmission electron microscopy and imaged at high resolution. Results: Axon packing density decreased slightly with age. Aging nerves contained higher numbers of enlarged and degenerating axons. Mean axonal diameter and in particular the variance of axonal diameter correlated well with age. Axonal mitochondria also showed age-dependent signs of pathology. The mean diameter of axonal mitochondria increased, and aged axons often contained profiles of mitochondria with very few or no cristae. Astrocytic mitochondria remained normal even in very old nerves. Changes to axons and axonal mitochondria in young glaucomatous nerves were comparable with those of 18- to 30-month-old naïve mice. In addition to axons and mitochondria, aged and glaucomatous nerves showed thickening of the blood vessel basement membranes and increased deposition of basement membrane collagen. Conclusions: On the ultrastructural level, the effects of age and elevated IOP are quite similar. One month of elevated IOP seems to have as strongly detrimental effects on the nerve as at least 18 months of normal aging.
van Zyl T, Yan W, McAdams A, Peng Y-R, Shekhar K, Regev A, Juric D, Sanes JR. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci U S A 2020;117(19):10339-10349.Abstract
Increased intraocular pressure (IOP) represents a major risk factor for glaucoma, a prevalent eye disease characterized by death of retinal ganglion cells; lowering IOP is the only proven treatment strategy to delay disease progression. The main determinant of IOP is the equilibrium between production and drainage of aqueous humor, with compromised drainage generally viewed as the primary contributor to dangerous IOP elevations. Drainage occurs through two pathways in the anterior segment of the eye called conventional and uveoscleral. To gain insights into the cell types that comprise these pathways, we used high-throughput single-cell RNA sequencing (scRNAseq). From ∼24,000 single-cell transcriptomes, we identified 19 cell types with molecular markers for each and used histological methods to localize each type. We then performed similar analyses on four organisms used for experimental studies of IOP dynamics and glaucoma: cynomolgus macaque (), rhesus macaque (), pig (), and mouse (). Many human cell types had counterparts in these models, but differences in cell types and gene expression were evident. Finally, we identified the cell types that express genes implicated in glaucoma in all five species. Together, our results provide foundations for investigating the pathogenesis of glaucoma and for using model systems to assess mechanisms and potential interventions.

Pages