All

Benischke A-S, Vasanth S, Miyai T, Katikireddy KR, White T, Chen Y, Halilovic A, Price M, Price F, Liton PB, Jurkunas UV. Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci Rep 2017;7(1):6656.Abstract
Human corneal endothelial cells (HCEnCs) are terminally differentiated cells that have limited regenerative potential. The large numbers of mitochondria in HCEnCs are critical for pump and barrier function required for corneal hydration and transparency. Fuchs Endothelial Corneal Dystrophy (FECD) is a highly prevalent late-onset oxidative stress disorder characterized by progressive loss of HCEnCs. We previously reported increased mitochondrial fragmentation and reduced ATP and mtDNA copy number in FECD. Herein, carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitochondrial depolarization decreased mitochondrial mass and Mfn2 levels, which were rescued with mitophagy blocker, bafilomycin, in FECD. Moreover, electron transport chain complex (I, V) decrease in FECD indicated deficient mitochondrial bioenergetics. Transmission electron microscopy of FECD tissues displayed an increased number of autophagic vacuoles containing degenerated and swollen mitochondria with cristolysis. An elevation of LC3-II and LAMP1 and downregulation of Mfn2 in mitochondrial fractions suggested that loss of fusion capacity targets fragmented mitochondria to the pre-autophagic pool and upregulates mitophagy. CCCP-induced mitochondrial fragmentation leads to Mfn2 and LC3 co-localization without activation of proteosome, suggesting a novel Mfn2 degradation pathway via mitophagy. These data indicate constitutive activation of mitophagy results in reduction of mitochondrial mass and abrogates cellular bioenergetics during degeneration of post-mitotic cells of ocular tissue.
Zhang Y, Kam WR, Liu Y, Chen X, Sullivan DA. Influence of Pilocarpine and Timolol on Human Meibomian Gland Epithelial Cells. Cornea 2017;36(6):719-724.Abstract
PURPOSE: Investigators have discovered that topical antiglaucoma drugs may induce meibomian gland dysfunction. This response may contribute to the dry eye disease commonly found in patients with glaucoma taking such medications. We hypothesize that drug action involves a direct effect on human meibomian gland epithelial cells (HMGECs). To test this hypothesis, we examined the influence of the antiglaucoma drugs, pilocarpine and timolol, on the morphology, survival, proliferation, and differentiation of HMGECs. METHODS: Immortalized (I) HMGECs (n = 2-3 wells/treatment/experiment) were cultured with multiple concentrations of pilocarpine or timolol for up to 7 days. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract) and differentiation (azithromycin). Cells were enumerated using a hemocytometer and evaluated for morphology, neutral lipid staining, and lysosome accumulation. RESULTS: Our results demonstrate that pilocarpine and timolol cause a dose-dependent decrease in the survival of IHMGECs. The clinically used concentrations are toxic and lead to cell atrophy, poor adherence, or death. By contrast, drug levels that are known to accumulate within the conjunctiva, adjacent to the meibomian glands, do not influence IHMGEC survival. These latter concentrations also have no effect on IHMGEC proliferation or differentiation, and they do not interfere with the ability of azithromycin to stimulate cellular neutral lipid and lysosome accumulation. This dose of pilocarpine, though, did suppress the epidermal growth factor+bovine pituitary extract-induced proliferation of IHMGECs. CONCLUSIONS: Our results support our hypothesis and demonstrate that these antiglaucoma drugs, pilocarpine and timolol, have direct effects on HMGECs that may influence their morphology, survival, and proliferative capacity.
Wu W, Tang L, D'Amore PA, Lei H. Application of CRISPR-Cas9 in eye disease. Exp Eye Res 2017;161:116-123.Abstract
The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease (Cas)9 is an effective instrument for revising the genome with great accuracy. This system has been widely employed to generate mutants in genomes from plants to human cells. Rapid improvements in Cas9 specificity in eukaryotic cells have opened great potential for the use of this technology as a therapeutic. Herein, we summarize the recent advancements of CRISPR-Cas9 use in research on human cells and animal models, and outline a basic and clinical pipeline for CRISPR-Cas9-based treatments of genetic eye diseases.
You C, Ma L, Lasave AF, Foster SC. Rituximab Induction and Maintenance Treatment in Patients with Scleritis and Granulomatosis with Polyangiitis (Wegener's). Ocul Immunol Inflamm 2017;:1-8.Abstract
AIMS: To evaluate the efficacy and safety of rituximab (RTX) induction and maintenance treatment for patients with scleritis and granulomatosis with polyangiitis (GPA), Wegener's. METHODS: Nine patients (12 eyes) with scleritis with GPA who did not respond to corticosteroids and more than one immunosuppressive agent who received ongoing maintenance RTX treatment were identified. Demographics and outcome measures were recorded. RESULTS: Median follow-up time of 30 months (range, 15 to 87 months). All 12 eyes achieved remission during the RTX maintenance period with a median time in remission of 14 months (range, 5-76 months), and median interval between RTX initiation and inactive disease of 5 months (range, 2-8 months). Two eyes in two patients relapsed. One received steroid eye drops, and the other received a short-term increased dose of intravenous corticosteroids. CONCLUSIONS: RTX was effective as an induction and maintenance treatment in our small cohort of patients with GPA-associated scleritis.
Zhou EH, Paolucci M, Dryja TP, Manley T, Xiang C, Rice DS, Prasanna G, Chen A. A Compact Whole-Eye Perfusion System to Evaluate Pharmacologic Responses of Outflow Facility. Invest Ophthalmol Vis Sci 2017;58(7):2991-3003.Abstract
Purpose: To discover novel therapies that lower IOP by increasing aqueous humor outflow facility, ex vivo ocular perfusion systems provide a valuable tool. However, currently available designs are limited by their throughput. Here we report the development of a compact, scalable perfusion system with improved throughput and its validation using bovine and porcine eyes. Methods: At a fixed IOP of 6 mm Hg, flow rate was measured by flow sensors. We validated the system by measuring the outflow responses to Y-39983 (a Rho kinase inhibitor), endothelin-1 (ET-1), ambrisentan (an antagonist for endothelin receptor A [ETA]), sphigosine-1-phosphate (S1P), JTE-013 (antagonist for S1P receptor 2 [S1P2]), S-nitroso-N-acetylpenicillamine (SNAP, a nitric oxide [NO] donor), and 3-Morpholino-sydnonimine (SIN-1, another NO donor). Results: The instrument design enabled simultaneous measurements of 20 eyes with a footprint of 1 m2. Relative to vehicle control, Y-39983 increased outflow by up to 31% in calf eyes. On the contrary, ET-1 decreased outflow by up to 79%, a response that could be blocked by pretreatment with ambrisentan, indicating a role for ETA receptors. Interestingly, the effect of ET-1 was also inhibited by up to 70% to 80% by pretreatment with NO donors, SNAP and SIN-1. In addition to testing in calf eyes, similar effects of ET-1 and ambrisentan were observed in adult bovine and porcine eyes. Conclusions: The compact eye perfusion platform provides an opportunity to efficiently identify compounds that influence outflow facility and may lead to the discovery of new glaucoma therapies.
Xie H-T, Zhao D, Liu Y, Zhang M-C. Umbilical Cord Patch Transplantation for Corneal Perforations and Descemetoceles. J Ophthalmol 2017;2017:2767053.Abstract
PURPOSE: To evaluate the clinical outcome of umbilical cord patch (UCP) transplantation for deep corneal ulcers with perforations and descemetoceles. METHODS: In this retrospective, noncomparative, interventional case series, 11 eyes of 11 patients with corneal perforation or descemetocele were included. The thickness and microstructure of UCP were measured. All eyes were treated with UCP and amniotic membrane transplantation for corneal reconstruction. Corneal ulcer healing, corneal thickness, anterior chamber formation, and best-corrected visual acuity (BCVA) were recorded and analyzed. RESULTS: The thickness of human UCP is 398.6 ± 102.8 μm (n = 5) with compact aligned fibers. The average age was 56.2 ± 15.8 (ranging from 22 to 75) years. The mean follow-up period was 7.1 ± 1.7 (ranging from 5 to 10) months. Four patients had descemetocele and 7 had perforation. The anterior chambers in all the 7 perforated corneas were formed at postoperative day 1. All patients regained a normal corneal thickness and smooth corneal surface within the first postoperative month. The vision improved in 10 eyes and remained unchanged in 1 eye. No recurrence nor side effects occurred during the follow-up. CONCLUSIONS: UCP can serve as an alternative material in the treatment of corneal perforations and descemetoceles. This treatment option is also beneficial in those countries with limited cornea donors and eye bank services.
Taniguchi EV, Paschalis EI, Crnej A, Ren A, Colby KA, Chodosh J, Pasquale LR, Shen LQ, Dohlman CH, Cruzat A. The Role of the Back Plate in Angle Anatomy with the Boston Type I Keratoprosthesis. Cornea 2017;36(9):1096-1101.Abstract
PURPOSE: To quantitatively evaluate the angle anatomy in eyes with the Boston type I keratoprosthesis (B-KPro) differing in the back plate (BP) material and size using anterior segment optical coherence tomography. METHODS: B-KPro eyes with poly(methyl methacrylate) (PMMA) (7.0 and 8.5 mm) and titanium (7.0, 8.5, and 9.5 mm) BPs were imaged with anterior segment optical coherence tomography. The angle opening distance at 500 μm from the scleral spur (AOD500), trabecular iris surface area at 500 μm from the scleral spur (TISA500), and trabecular iris angle at 500 μm from the scleral spur (TIA500) were measured. Among the visible quadrants, the average, the temporal, the widest, and the narrowest angle of each eye were included in the analysis. Average time between B-KPro implantation and imaging was 7.5 ± 1.4 years for a PMMA BP and 2.4 ± 2.3 years for a titanium BP (P < 0.0001). RESULTS: We analyzed 17 B-KPro eyes with PMMA BPs and 24 B-KPro eyes with titanium BPs. The average AOD500 (394.1 ± 226.9 vs. 454.5 ± 255.6 μm, P = 0.44), average TIA500 (26.2 ± 14.2 vs. 29.8 ± 13.9 degrees, P = 0.43), and average TISA500 (0.15 ± 0.08 vs. 0.17 ± 0.10 μm, P = 0.52) were not statistically different between eyes with PMMA and titanium BPs, nor were the temporal, the narrowest, and the widest angle measurements of each eye (all P > 0.05). Similarly, no significant differences were found between the angle measurements of B-KPro eyes with a titanium BP diameter of 8.5 or 9.5 mm (all P > 0.05). CONCLUSIONS: We successfully visualized the angle anatomy in 66.1% of the imaged eyes, including all BPs studied. Neither the material nor the size of the B-KPro BP had a significant impact on the angle anatomy.
Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart J-C, Jurkunas UV, Nadal M, Bouloc P, Dairou J, Lamouri A. Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science 2017;357(6347):208-211.Abstract
DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1-depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.
Sun Y, Liu C-H, Wang Z, Meng SS, Burnim SB, SanGiovanni JP, Kamenecka TM, Solt LA, Chen J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. FASEB J 2017;31(10):4492-4502.Abstract
Pathological proliferation of retinal blood vessels commonly causes vision impairment in proliferative retinopathies, including retinopathy of prematurity. Dysregulated crosstalk between the vasculature and retinal neurons is increasingly recognized as a major factor contributing to the pathogenesis of vascular diseases. Class 3 semaphorins (SEMA3s), a group of neuron-secreted axonal and vascular guidance factors, suppress pathological vascular growth in retinopathy. However, the upstream transcriptional regulators that mediate the function of SEMA3s in vascular growth are poorly understood. Here we showed that retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor and transcription factor, is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in a mouse model of oxygen-induced proliferative retinopathy. We found that genetic deficiency of RORα substantially induced Sema3e expression in retinopathy. Both RORα and SEMA3E were expressed in retinal ganglion cells. RORα directly bound to a specific ROR response element on the promoter of Sema3e and negatively regulated Sema3e promoter-driven luciferase expression. Suppression of Sema3e using adeno-associated virus 2 carrying short hairpin RNA targeting Sema3e promoted disoriented pathological neovascularization and partially abolished the inhibitory vascular effects of RORα deficiency in retinopathy. Our findings suggest that RORα is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in pathological retinal angiogenesis.-Sun, Y., Liu, C.-H., Wang, Z., Meng, S. S., Burnim, S. B., SanGiovanni, J. P., Kamenecka, T. M., Solt, L. A., Chen, J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis.
Taniguchi T, Woodward AM, Magnelli P, McColgan NM, Lehoux S, Jacobo SMP, Mauris J, Argüeso P. N-Glycosylation affects the stability and barrier function of the MUC16 mucin. J Biol Chem 2017;292(26):11079-11090.Abstract
Transmembrane mucins are highly O-glycosylated glycoproteins that coat the apical glycocalyx on mucosal surfaces and represent the first line of cellular defense against infection and injury. Relatively low levels of N-glycans are found on transmembrane mucins, and their structure and function remain poorly characterized. We previously reported that carbohydrate-dependent interactions of transmembrane mucins with galectin-3 contribute to maintenance of the epithelial barrier at the ocular surface. Now, using MALDI-TOF mass spectrometry, we report that transmembrane mucin N-glycans in differentiated human corneal epithelial cells contain primarily complex-type structures with N-acetyllactosamine, a preferred galectin ligand. In N-glycosylation inhibition experiments, we find that treatment with tunicamycin and siRNA-mediated knockdown of the Golgi N-acetylglucosaminyltransferase I gene (MGAT1) induce partial loss of both total and cell-surface levels of the largest mucin, MUC16, and a concomitant reduction in glycocalyx barrier function. Moreover, we identified a distinct role for N-glycans in promoting MUC16's binding affinity toward galectin-3 and in causing retention of the lectin on the epithelial cell surface. Taken together, these studies define a role for N-linked oligosaccharides in supporting the stability and function of transmembrane mucins on mucosal surfaces.
Sriram S, Tran JA, Guo X, Hutcheon AEK, Kazlauskas A, Zieske JD. Development of wound healing models to study TGFβ3's effect on SMA. Exp Eye Res 2017;161:52-60.Abstract
The goal of this study was to test the efficacy of transforming growth factor beta 3 (TGFβ3) in reducing α-smooth muscle actin (SMA) expression in two models-an ex vivo organ culture and an in vitro 3D cell construct-both of which closely mimic an in vivo environment. For the ex vivo organ culture system, a central 6.0 mm corneal keratectomy was performed on freshly excised rabbit globes The corneas were then excised, segregated into groups treated with 1.0 ng/ml TGFβ1 or β3 (T1 or T3, respectively), and cultured for 2 weeks. The corneas were assessed for levels of haze and analyzed for SMA mRNA levels. For the 3D in vitro model, rabbit corneal fibroblasts (RbCFs) were cultured for 4 weeks on poly-transwell membranes in Eagle's minimum essential media (EMEM) + 10% FBS + 0.5 mM vitamin C ± 0.1 ng/ml T1 or T3. At the end of 4 weeks, the constructs were processed for analysis by indirect-immunofluorescence (IF) and RT-qPCR. The RT-qPCR data showed that SMA mRNA expression in T3 samples for both models was significantly lower (p < 0.05) than T1 treatment (around 3-fold in ex vivo and 2-fold in constructs). T3 also reduced the amount of scarring in ex vivo corneas as compared with the T1 samples. IF data from RbCF constructs confirmed that T3-treated samples had up to 4-fold (p < 0.05) lower levels of SMA protein expression than samples treated with T1. These results show that T3 when compared to T1 decreases the expression of SMA in both ex vivo organ culture and in vitro 3D cell construct models. Understanding the mechanism of T3's action in these systems and how they differ from simple cell culture models, may potentially help in developing T3 as an anti-scarring therapy.
Mombaerts I, Bilyk JR, Rose GE, McNab AA, Fay A, Dolman PJ, Allen RC, Devoto MH, Harris GJ, of the Society EPO. Consensus on Diagnostic Criteria of Idiopathic Orbital Inflammation Using a Modified Delphi Approach. JAMA Ophthalmol 2017;Abstract
Importance: Current practice to diagnose idiopathic orbital inflammation (IOI) is inconsistent, leading to frequent misdiagnosis of other orbital entities, including cancer. By specifying criteria, diagnosis of orbital inflammation will be improved. Objective: To define a set of criteria specific for the diagnosis of IOI. Design, Setting, and Participants: A 3-round modified Delphi process with an expert panel was conducted from June 8, 2015, to January 25, 2016. Fifty-three orbital scientist experts, identified through membership in the Orbital Society, were invited to participate in on online survey and they scored, using 5-point Likert scales, items that are eligible as diagnostic criteria from the literature and from personal experience. The items were clustered around the anatomic subtypes of IOI: idiopathic dacryoadenitis and idiopathic orbital fat inflammation (2 nonmyositic IOIs), and idiopathic orbital myositis (myositic IOI). Items with dissensus were rescored in the second round, and all items with consensus (median, ≥4; interquartile range, ≤1) were ranked by importance in the third round. Main Outcomes and Measures: Consensus on items to be included in the criteria. Results: Of the 53 experts invited to participate, a multinational panel of 35 (66%) individuals with a mean (SD) years of experience of 31 (11) years were included. Consensus was achieved on 7 of 14 clinical and radiologic items and 5 of 7 pathologic items related to diagnosis of nonmyositic IOI, and 11 of 14 clinical and radiologic items and 1 of 5 pathologic items for myositic IOI. There was agreement among panelists to focus on surgical tissue biopsy results in the diagnosis of nonmyositic IOI and on a trial with systemic corticosteroids in myositic IOI. Panelists agreed that a maximum number of 30 IgG4-positive plasma cells per high-power field in the orbital tissue is compatible with the diagnosis of IOI. Conclusions and Relevance: An international panel of experts endorsed consensus diagnostic criteria of IOI. These criteria define a level of exclusion suggested for diagnosis and include tissue biopsy for lesions not confined to the extraocular muscles. This consensus is a step toward developing guidelines for the management of IOI, which needs to be followed by validation studies of the criteria.
Khajavi M, Zhou Y, Birsner AE, Bazinet L, Rosa Di Sant A, Schiffer AJ, Rogers MS, Krishnaji ST, Hu B, Nguyen V, Zon L, D'Amato RJ. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice. PLoS Genet 2017;13(6):e1006848.Abstract
Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and treatment of a wide variety of angiogenesis-dependent diseases.
Lee JK, Shin SR, Desalvo A, Lee G, Lee JY, Polini A, Chae S, Jeong H, Kim J, Choi H, Lee HY. Nonmediated, Label-Free Based Detection of Cardiovascular Biomarker in a Biological Sample. Adv Healthc Mater 2017;6(17)Abstract
Direct electrochemical (EC) monitoring in a cell culture medium without electron transporter as called mediator is attractive topic in vitro organoid based on chip with frequently and long-time monitoring since it can avoid to its disadvantage as stability, toxicity. Here, direct monitoring with nonmediator is demonstrated based on impedance spectroscopy under the culture medium in order to overcome the limitation of mediator. The applicability of EC monitoring is shown by detecting alpha-1-anti trypsin (A1AT) which is known as biomarkers for cardiac damage and is widely chosen in organoid cardiac cell-based chip. The validity of presented EC monitoring is proved by observing signal processing and transduction in medium, mediator, medium-mediator complex. After the observation of electron behavior, A1AT as target analyte is immobilized on the electrode and detected using antibody-antigen interaction. As a result, the result indicates limit of detection is 10 ng mL(-1) and linearity for the 10-1000 ng mL(-1) range, with a sensitivity of 3980 nF (log [g mL])(-1) retaining specificity. This EC monitoring is based on label-free and reagentless detection, will pave the way to use for continuous and simple monitoring of in vitro organoid platform.
Mahmoud MM, Serbanovic-Canic J, Feng S, Souilhol C, Xing R, Hsiao S, Mammoto A, Chen J, Ariaans M, Francis SE, Van der Heiden K, Ridger V, Evans PC. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci Rep 2017;7(1):3375.Abstract
Blood flow influences atherosclerosis by generating wall shear stress, which alters endothelial cell (EC) physiology. Low shear stress induces dedifferentiation of EC through a process termed endothelial-to-mesenchymal transition (EndMT). The mechanisms underlying shear stress-regulation of EndMT are uncertain. Here we investigated the role of the transcription factor Snail in low shear stress-induced EndMT. Studies of cultured EC exposed to flow revealed that low shear stress induced Snail expression. Using gene silencing it was demonstrated that Snail positively regulated the expression of EndMT markers (Slug, N-cadherin, α-SMA) in EC exposed to low shear stress. Gene silencing also revealed that Snail enhanced the permeability of endothelial monolayers to macromolecules by promoting EC proliferation and migration. En face staining of the murine aorta or carotid arteries modified with flow-altering cuffs demonstrated that Snail was expressed preferentially at low shear stress sites that are predisposed to atherosclerosis. Snail was also expressed in EC overlying atherosclerotic plaques in coronary arteries from patients with ischemic heart disease implying a role in human arterial disease. We conclude that Snail is an essential driver of EndMT under low shear stress conditions and may promote early atherogenesis by enhancing vascular permeability.

Pages