All

Rothfield L, Falcone MM, Gaier ED, Heidary G, Gise R. Neuro-ophthalmic Complications in Pediatric Leukemia. J Neuroophthalmol 2023;43(4):520-524.Abstract
BACKGROUND: Optic neuropathy in childhood leukemia occurs through multiple direct and indirect mechanisms, including leukemic infiltration of the optic nerve, infection, blood dyscrasias, or adverse effects of treatment. We aimed to characterize visual outcomes in pediatric patients with leukemia-associated neuro-ophthalmic manifestations. METHODS: We retrospectively identified patients with leukemia and optic nerve pathology over 13 years by diagnostic billing codes. We collected information on demographics, presentation, treatment course, and visual outcomes directly from medical records. RESULTS: Of the 19 patients who met inclusion criteria, 17 (89.5%) had pseudotumor cerebri and 2 had direct optic nerve infiltration. Causes of increased intracranial pressure included central nervous system infiltration (6 of 17), hyperviscosity/leukemia (2 of 17), venous sinus thrombosis (3 of 17), medication induced (5 of 17), and bacterial meningitis (1 of 17). 47.1% (8 of 17) had papilledema at the time of leukemia diagnosis, and 94.1% (16 of 17) of patients with pseudotumor cerebri were treated with acetazolamide. At presentation, 3 patients had decreased vision secondary to macular ischemia, subhyaloid vitreous hemorrhage, or steroid induced glaucoma. Following treatment of pseudotumor cerebri, binocular visual acuity was ≥20/25 in all patients. One patient with optic nerve infiltration had a final visual acuity of count fingers in the affected eye. CONCLUSIONS: In our chart review, the most common mechanism of neuro-ophthalmic involvement in pediatric leukemia was elevated intracranial pressure from a myriad of causes. Visual outcomes from patients with elevated intracranial pressure were excellent. Understanding the mechanisms by which leukemia can cause optic nerve disease in pediatric patients can facilitate earlier diagnosis and treatment and potentially improve visual outcomes.
Lopera F, Marino C, Chandrahas AS, O'Hare M, Villalba-Moreno ND, Aguillon D, Baena A, Sanchez JS, Vila-Castelar C, Ramirez Gomez L, Chmielewska N, Oliveira GM, Littau JL, Hartmann K, Park K, Krasemann S, Glatzel M, Schoemaker D, Gonzalez-Buendia L, Delgado-Tirado S, Arevalo-Alquichire S, Saez-Torres KL, Amarnani D, Kim LA, Mazzarino RC, Gordon H, Bocanegra Y, Villegas A, Gai X, Bootwalla M, Ji J, Shen L, Kosik KS, Su Y, Chen Y, Schultz A, Sperling RA, Johnson K, Reiman EM, Sepulveda-Falla D, Arboleda-Velasquez JF, Quiroz YT. Resilience to autosomal dominant Alzheimer's disease in a Reelin-COLBOS heterozygous man. Nat Med 2023;29(5):1243-1252.Abstract
We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.
Pramanik B, Islam MM, Patra HK. Rational design of peptide-based implants for corneal bioengineering. Curr Opin Biotechnol 2023;81:102947.Abstract
Regeneration of damaged cornea can save vision for millions of patients. Most of these patients are waiting for transplantation of a donor cornea or suitable substitute to restore vision. Although donor cornea transplantation is the most clinically accepted treatment, shortage of donor cornea results in almost 69 out of every 70 patients untreated with the waiting list for transplantation drastically increasing every year according to a prepandemic estimation. Therefore, corneal replacements are coming up as a cutting-edge alternative strategy. In view of the peptides, especially collagen-like peptides and peptide amphiphiles with bioactive functional motifs demonstrate promising avenue for the corneal tissue engineering and promoting regeneration, by their hierarchical self-assembling propensity to acquire desired nano- to macroscale 3D architecture. Here, we analyze rational peptide designing, self-assembly, and strategies of peptide/peptide-based nanoscale building blocks to create the extracellular matrix mimetic implants for functional regeneration of the cornea.
Falahati M, Kurukuti NM, Vargas-Martin F, Peli E, Jung J-H. Oblique multi-periscopic prism for field expansion of homonymous hemianopia. Biomed Opt Express 2023;14(5):2352-2364.Abstract
Oblique Fresnel peripheral prisms have been used for field expansion in homonymous hemianopia mobility such as walking and driving. However, limited field expansion, low image quality, and small eye scanning range limit their effectiveness. We developed a new oblique multi-periscopic prism using a cascade of rotated half-penta prisms, which provides 42° horizontal field expansion along with 18° vertical shift, high image quality, and wider eye scanning range. Feasibility and performance of a prototype using 3D-printed module are demonstrated by raytracing, photographic depiction, and Goldmann perimetry with patients with homonymous hemianopia.
Peters K, McDonald T, Muhammad F, Walsh M, Drenen K, Montieth A, Stephen Foster C, Lee DJ. A2Ar-dependent PD-1+ and TIGIT+ Treg cells have distinct homing requirements to suppress autoimmune uveitis in mice. Mucosal Immunol 2023;16(4):422-431.Abstract
The proper function of regulatory T cells (Tregs) to suppress inflammation requires homing to the correct tissue site. Resolution of autoimmune uveitis generates distinct programmed death receptor 1 (PD-1+) and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT+) Tregs in an adenosine 2A receptor (A2Ar)-dependent manner found in the spleen. Where and how these Tregs migrate from the spleen to prevent uveitis is not known. In this work, we show that A2Ar-dependent Tregs migrated to the eye and secondary lymphoid tissue and expressed chemokine receptor (CCR)6 and CCR7. Suppression of autoimmune uveitis required CCR6 and CCR7 expression for TIGIT+ Tregs but not PD-1+ Tregs. Moreover, stimulation of A2Ar on T cells from patients showed a decreased capacity to induce TIGIT+ Tregs that expressed CCR6 or CCR7, and PD-1+ Treg that expressed CCR6. This work provides a mechanistic understanding of the homing requirements of each of these Treg populations. Importantly, this work is clinically relevant because patients with chronic autoimmune uveitis are unable to induce the Treg populations identified in mice that home to the target tissue.
Jones L, Efron N, Bandamwar K, Barnett M, Jacobs DS, Jalbert I, Pult H, Rhee MK, Sheardown H, Shovlin JP, Stahl U, Stanila A, Tan J, Tavazzi S, Ucakhan OO, Willcox MDP, Downie LE. TFOS lifestyle: Impact of contact lenses on the ocular surface. Ocul Surf 2023;Abstract
Several lifestyle choices made by contact lens wearers can have adverse consequences on ocular health. These include being non-adherent to contact lens care, sleeping in lenses, ill-advised purchasing options, not seeing an eyecare professional for regular aftercare visits, wearing lenses when feeling unwell, wearing lenses too soon after various forms of ophthalmic surgery, and wearing lenses when engaged in risky behaviours (e.g., using tobacco, alcohol or recreational drugs). Those with a pre-existing compromised ocular surface may find that contact lens wear exacerbates ocular disease morbidity. Conversely, contact lenses may have various therapeutic benefits. The coronavirus disease-2019 (COVID-19) pandemic has impinged upon the lifestyle of contact lens wearers, introducing challenges such as mask-associated dry eye, contact lens discomfort with increased use of digital devices, inadvertent exposure to hand sanitizers, and reduced use of lenses. Wearing contact lenses in challenging environments, such as in the presence of dust and noxious chemicals, or where there is the possibility of ocular trauma (e.g., sport or working with tools) can be problematic, although in some instances lenses can be protective. Contact lenses can be worn for sport, theatre, at high altitude, driving at night, in the military and in space, and special considerations are required when prescribing in such situations to ensure successful outcomes. A systematic review and meta-analysis, incorporated within the review, identified that the influence of lifestyle factors on soft contact lens dropout remains poorly understood, and is an area in need of further research. Overall, this report investigated lifestyle-related choices made by clinicians and contact lens wearers and discovered that when appropriate lifestyle choices are made, contact lens wear can enhance the quality of life of wearers.
Aboobakar IF, Collantes ERA, Hauser MA, Stamer DW, Wiggs JL. Rare protective variants and glaucoma-relevant cell stressors modulate Angiopoietin-like 7 expression. Hum Mol Genet 2023;32(15):2523-2531.Abstract
Rare missense and nonsense variants in the Angiopoietin-like 7 (ANGPTL7) gene confer protection from primary open-angle glaucoma (POAG), though the functional mechanism remains uncharacterized. Interestingly, a larger variant effect size strongly correlates with in silico predictions of increased protein instability (r = -0.98), suggesting that protective variants lower ANGPTL7 protein levels. Here, we show that missense and nonsense variants cause aggregation of mutant ANGPTL7 protein in the endoplasmic reticulum (ER) and decreased levels of secreted protein in human trabecular meshwork (TM) cells; a lower secreted:intracellular protein ratio strongly correlates with variant effects on intraocular pressure (r = 0.81). Importantly, accumulation of mutant protein in the ER does not increase expression of ER stress proteins in TM cells (P > 0.05 for all variants tested). Cyclic mechanical stress, a glaucoma-relevant physiologic stressor, also significantly lowers ANGPTL7 expression in primary cultures of human Schlemm's canal (SC) cells (-2.4-fold-change, P = 0.01). Collectively, these data suggest that the protective effects of ANGPTL7 variants in POAG stem from lower levels of secreted protein, which may modulate responses to physiologic and pathologic ocular cell stressors. Downregulation of ANGPTL7 expression may therefore serve as a viable preventative and therapeutic strategy for this common, blinding disease.
Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage. Life Sci Alliance 2023;6(8)Abstract
Glaucoma is a common neurodegenerative disorder characterized by retinal ganglion cell death, astrocyte reactivity in the optic nerve, and vision loss. Currently, lowering the intraocular pressure (IOP) is the first-line treatment, but adjuvant neuroprotective approaches would be welcome. Vitamin C possesses neuroprotective activities that are thought to be related to its properties as a co-factor of enzymes and its antioxidant effects. Here, we show that vitamin C promotes a neuroprotective phenotype and increases gene expression related to neurotropic factors, phagocytosis, and mitochondrial ATP production. This effect is dependent on the up-regulation of secreted phosphoprotein 1 (SPP1) in reactive astrocytes via the transcription factor E2F1. SPP1+ astrocytes in turn promote retinal ganglion cell survival in a mouse model of glaucoma. In addition, oral administration of vitamin C lowers the IOP in mice. This study identifies an additional neuroprotective pathway for vitamin C and suggests a potential therapeutic role of vitamin C in neurodegenerative diseases such as glaucoma.
Patefield A, Meng Y, Airaldi M, Coco G, Vaccaro S, Parekh M, Semeraro F, Gadhvi KA, Kaye SB, Zheng Y, Romano V. Deep Learning Using Preoperative AS-OCT Predicts Graft Detachment in DMEK. Transl Vis Sci Technol 2023;12(5):14.Abstract
PURPOSE: To evaluate a novel deep learning algorithm to distinguish between eyes that may or may not have a graft detachment based on pre-Descemet membrane endothelial keratoplasty (DMEK) anterior segment optical coherence tomography (AS-OCT) images. METHODS: Retrospective cohort study. A multiple-instance learning artificial intelligence (MIL-AI) model using a ResNet-101 backbone was designed. AS-OCT images were split into training and testing sets. The MIL-AI model was trained and validated on the training set. Model performance and heatmaps were calculated from the testing set. Classification performance metrics included F1 score (harmonic mean of recall and precision), specificity, sensitivity, and area under curve (AUC). Finally, MIL-AI performance was compared to manual classification by an experienced ophthalmologist. RESULTS: In total, 9466 images of 74 eyes (128 images per eye) were included in the study. Images from 50 eyes were used to train and validate the MIL-AI system, while the remaining 24 eyes were used as the test set to determine its performance and generate heatmaps for visualization. The performance metrics on the test set (95% confidence interval) were as follows: F1 score, 0.77 (0.57-0.91); precision, 0.67 (0.44-0.88); specificity, 0.45 (0.15-0.75); sensitivity, 0.92 (0.73-1.00); and AUC, 0.63 (0.52-0.86). MIL-AI performance was more sensitive (92% vs. 31%) but less specific (45% vs. 64%) than the ophthalmologist's performance. CONCLUSIONS: The MIL-AI predicts with high sensitivity the eyes that may have post-DMEK graft detachment requiring rebubbling. Larger-scale clinical trials are warranted to validate the model. TRANSLATIONAL RELEVANCE: MIL-AI models represent an opportunity for implementation in routine DMEK suitability screening.
Branco J, Elze T, Wang J-K, Pasquale LR, K Garvin M, Kardon R, Kupersmith MJ. Archetypal analysis of longitudinal visual fields for idiopathic intracranial hypertension patients presenting in a clinic setting. PLOS Digit Health 2023;2(5):e0000240.Abstract
We previously applied archetypal analysis (AA) using visual fields (VF) from the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) to derive a model, which quantified patterns (or archetypes [ATs] of VF loss), anticipated recovery, and identified residual VF deficits. We hypothesized that AA could produce similar results using IIH VFs collected in clinical practice. We applied AA to 803 VFs from 235 eyes with IIH from an outpatient neuro-ophthalmology clinic and created a clinic-derived model of ATs, with the relative weight (RW) and average total deviation (TD) for each AT. We also created a combined-derived model from an input dataset containing the clinic VFs and 2862 VFs from the IIHTT. We used both models to decompose clinic VF into ATs of varying percent weight (PW), correlated presentation AT PW with mean deviation (MD), and evaluated final visit VFs considered "normal" by MD ≥ -2.00 dB for residual abnormal ATs. The 14-AT clinic-derived and combined-derived models revealed similar patterns of VF loss previously identified in the IIHTT model. AT1 (a normal pattern) was most prevalent in both models (RW = 51.8% for clinic-derived; 35.4% for combined-derived). Presentation AT1 PW correlated with final visit MD (r = 0.82, p < 0.001 for the clinic-derived model; r = 0.59, p < 0.001 for the combined-derived model). Both models showed ATs with similar patterns of regional VF loss. The most common patterns of VF loss in "normal" final visit VFs using each model were clinic-derived AT2 (mild global depression with enlarged blind spot; 44/125 VFs; 34%) and combined-derived AT2 (near-normal; 93/149 VFs; 62%). AA provides quantitative values for IIH-related patterns of VF loss that can be used to monitor VF changes in a clinic setting. Presentation AT1 PW is associated with the degree of VF recovery. AA identifies residual VF deficits not otherwise indicated by MD.
Alemi H, Dehghani S, Musayeva A, Nadari A, Narimatsu A, Sharifi S, Forouzanfar K, Wang S, Dohlman TH, Yin J, Chen Y, Dana R. Insights into mustard gas keratopathy: Characterizing corneal layer-specific changes in mice exposed to nitrogen mustard. Exp Eye Res 2023;:109495.Abstract
Exposure to mustard agents, such as sulfur mustard (SM) and nitrogen mustard (NM), often results in ocular surface damage. This can lead to the emergence of various corneal disorders that are collectively referred to as mustard gas keratopathy (MGK). In this study, we aimed to develop a mouse model of MGK by using ocular NM exposure, and describe the subsequent structural changes analyzed across the different layers of the cornea. A 3 μL solution of 0.25 mg/mL NM was applied to the center of the cornea via a 2-mm filter paper for 5 min. Mice were evaluated prior to and after exposure on days 1 and 3, and weekly for 4 weeks using slit lamp examination with fluorescein staining. Anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) tracked changes in the epithelium, stroma, and endothelium of the cornea. Histologic evaluation and immunostaining were used to examine corneal cross-sections collected at the completion of follow-up. A biphasic ocular injury was observed in mice exposed to NM, most prominent in the corneal epithelium and anterior stroma. Following exposure, mice experienced central corneal epithelial erosions and thinning, accompanied by a decreased number of nerve branches in the subbasal plexus and increased activated keratocytes in the stroma. The epithelium was recovered by day 3, followed by exacerbated punctuate erosions alongside persistent stromal edema that arose and continued onward to four weeks post-exposure. The endothelial cell density was reduced on the first day after NM exposure, which persisted until the end of follow-up, along with increased polymegethism and pleomorphism. Microstructural changes in the central cornea at this time included dysmorphic basal epithelial cells, and in the limbal cornea included decreased cellular layers and p63+ area, along with increased DNA oxidization. We present a mouse model of MGK using NM that successfully replicates ocular injury caused by SM in humans who have been exposed to mustard gas. Our research suggests DNA oxidation contributes to the long-term effects of nitrogen mustard on limbal stem cells.

Pages